Diferència entre les revisions de "Hidrodinàmica"

De L'Enciclopèdia, la wikipedia en valencià
Anar a la navegació Anar a la busca
m
(Text reemplaça - 'cridat' a 'nomenat')
Llínea 48: Llínea 48:
 
== Decorreguts compresibles ==
 
== Decorreguts compresibles ==
  
En el cas de decorreguts compresibles, a on l'equació de Bernouilli no és vàlida, és necessari utilisar la formulació més completa de [[equacions de Navier-Stokes|Navier-Stokes]]. Estes equacions són l'expressió matemàtica de la conservació de [[massa]] i de [[cantitat de moviment]]. Per a decorreguts compresibles pero no [[viscositat|viscosos]], també cridats [[Decorregut coloidal|decorreguts coloidales]], es reduïxen a les [[equacions de Euler (fluït)|equacions de *Euler]].
+
En el cas de decorreguts compresibles, a on l'equació de Bernouilli no és vàlida, és necessari utilisar la formulació més completa de [[equacions de Navier-Stokes|Navier-Stokes]]. Estes equacions són l'expressió matemàtica de la conservació de [[massa]] i de [[cantitat de moviment]]. Per a decorreguts compresibles pero no [[viscositat|viscosos]], també nomenats [[Decorregut coloidal|decorreguts coloidales]], es reduïxen a les [[equacions de Euler (fluït)|equacions de *Euler]].
  
 
== Vore també ==
 
== Vore també ==

Revisió de 16:31 28 ago 2023

L'hidrodinàmica estudia la dinàmica dels líquits.

Per a l'estudi de l'hidrodinàmica normalment es consideren tres aproximacions importants:

  • Que el fluït és un líquit incompresible, és dir, que la seua densitat no varia en el canvi de pressió, a diferència de lo que ocorre en els gassos;
  • Es considera despreciable la pèrdua d'energia per la viscositat, ya que se supon que un líquit és òptim per a fluir i esta pèrdua és molt menor comparant-la en l'inèrcia del seu moviment;
  • Se supon que el fluix dels líquits és un règim estable o estacionari, és dir, que la velocitat del líquit en un punt és independent del temps.

L'hidrodinàmica té numeroses aplicacions industrials, com a disseny de canals, construcció de ports i preses, fabricació de barcos, turbines, etc.

Daniel Bernoulli va ser un dels primers matemàtics que va realisar estudis d'hidrodinàmica, sent precisament ell qui va donar nom a esta branca de la física en la seua obra de l'any 1738, Hydrodynamica.

Característiques i lleis generals

L'hidrodinàmica o fluïts en moviments presenta vàries característiques que poden ser descrites per equacions matemàtiques molt senzilles. Entre elles:

  • Llei de Torricelli: si en un recipient que no està tapat es troba un fluït i se li obri al recipient un orifici la velocitat en que caurà eixe fluït serà:

{{{1}}}

  • L'atra equació matemàtica que descriu als fluïts en moviment és el número de Reynolds (adimensional):

{{{1}}}

A on <math>\rho</math> es la densitat, <math>c</math> la velocitat, <math>D</math> és el diàmetro del cilindre i <math>\mu</math> és la viscositat dinàmica. Concretament, este número indica si el fluït és laminar o turbulent, o si està en la zona de transició. <math>Re<2300</math> indica laminar, <math>Re>4000</math> turbulencia.

Caudal

Artícul principal → Caudal (fluït).

El cabal o despesa és una de les magnitudes principals en l'estudi de l'hidrodinàmica. Es definix com el volum de líquit <math>\Delta{V}</math> que fluïx per unitat de temps <math>\Delta{t}</math>. Les seues unitats en el Sistema Internacional són els m3/s i la seua expressió matemàtica:

{{{1}}}

{\Delta{t}}</math> }}

Esta fòrmula nos permet saber la cantitat de líquit que passa per un conducte en cert interval de temps o determinar el temps que tardarà en passar certa cantitat de líquit.

Principi de Bernoulli

Artícul principal → Principi de Bernoulli.

El principi de Bernoulli és una conseqüència de la conservació de l'energia en els líquits en moviment. Establix que en un líquit incompresible i no viscós, la suma de la pressió hidrostàtica, la energia cinètica per unitat de volum i la energia potencial gravitatòria per unitat de volum, és constant a lo llarc de tot el circuit. És dir, que dita magnitut pren el mateix valor en qualsevol parell de punts del circuit. La seua expressió matemàtica és:

{{{1}}}

a on <math>P</math> és la pressió hidrostàtica, <math>\rho</math> la densitat, <math>g</math> l'aceleració de la gravetat, <math>h</math> la altura del punt i <math>v</math> la velocitat del fluit en eixe punt. Els subíndexs 1 i 2 es referixen als dos punts del circuit.

L'atra equació que complixen els fluïts no compresibles és la equació de continuïtat, que establix que el cabal és constant a lo llarc de tot el circuit hidràulic:

{{{1}}}

a on <math>A</math> és l'àrea de la secció del conducte per a on circula el fluït i <math>v</math> la seua velocitat mija.

Decorreguts compresibles

En el cas de decorreguts compresibles, a on l'equació de Bernouilli no és vàlida, és necessari utilisar la formulació més completa de Navier-Stokes. Estes equacions són l'expressió matemàtica de la conservació de massa i de cantitat de moviment. Per a decorreguts compresibles pero no viscosos, també nomenats decorreguts coloidales, es reduïxen a les equacions de *Euler.

Vore també