Diferència entre les revisions de "Àlgebra"
(→Orige) |
|||
Llínea 32: | Llínea 32: | ||
** [[Àlgebra lineal]], a on s'estudien les propietats específiques dels [[espai vectorial|espais vectorials]] (incloent [[matriu (matemàtiques)|matrius]]). | ** [[Àlgebra lineal]], a on s'estudien les propietats específiques dels [[espai vectorial|espais vectorials]] (incloent [[matriu (matemàtiques)|matrius]]). | ||
** [[Àlgebra universal]], a on s'estudien de forma general els sistemes formats per un conjunt i una colecció d'operacions sobre ell. | ** [[Àlgebra universal]], a on s'estudien de forma general els sistemes formats per un conjunt i una colecció d'operacions sobre ell. | ||
− | ** [[Geometria algebraica]], que combina l'àlgebra abstracta en la | + | ** [[Geometria algebraica]], que combina l'àlgebra abstracta en la [[geometria]]. |
− | [[geometria]]. | ||
[[Categoria:Matemàtiques]] | [[Categoria:Matemàtiques]] | ||
[[Categoria:Àlgebra| ]] | [[Categoria:Àlgebra| ]] |
Revisió de 13:47 6 març 2015
L'àlgebra és una de les principals branques de les matemàtiques juntament en la geometria, l'anàlisis i la teoria de números. L'àlgebra es pot considerar com una generalisació i extensió de l'aritmètica. El terme prové de l'àrap al-jabr (الجبر) i significa "restauració", i és part del títul d'un tractat de l'any 830 escrit pel matemàtic persa Al-Khwarazmí: Al-Kitab al-muhtasar fi hirab al-jabr wa-l-muqabala ("Llibre condensat del càlcul per restauració i reducció").
Hui entenem com àlgebra a la branca de les matemàtiques que estudia les estructures, les relacions i les quantitats. L'algebra elemental es aquell que s'encomana d'operacions aritmètiques (suma, substraccio, multiplicacio, divisio) pero que, a diferencia de l'aritmètica, utilisa símbols (a, X, i) en lloc de números (1, 2, 9). Açò permet formular lleis generals i fer referència a números desconeguts (incognites), lo que possibilita el desenroll d'equacions i l'anàlisis corresponent a la seua resolucio.
L'àlgebra elemental postula distintes lleis que permeten coneixer les propietats de les operacions aritmetiques. Per eixemple, l'adicio (A+B) es commutativa (A+B=B+A), associativa, te una operacio inversa (la substraccio) i posseix un element neutre (0).
Algunes d'estes propietats son compartides per distintes operacions (la multiplicacio, per eixemple, també es commutativa i associativa).
Se coneix com Teorema Fonamental de l'Àlgebra a aquell que establix que un polinomi, en una variable no constant en coeficients complexos, te tantes arrels com el seu grau, ya que les rails se conten en les seues multiplicitats. Aço suposa que el cos dels números complexos es tancat per a les operacions de l'àlgebra.
Orige
L'història de l'algebra escomençà en l'antic Egipte i Babilonia, a on foren capaços de resolver equacions llinials (AX = B) i quadratiques (AX2 + BX = C), aixina com equacions indeterminades com X2 + Y2 = Z2, en varies incognites. Els antics babilonis resolvien qualsevol equacio quadratica amprant essencialment els mateixos metodos que hui s'ensenyen. Tambe foren capaços de resolver algunes equacions indeterminades.
Els matematics aleixandrins Heró i Diofante continuaren en la tradicio d'Egipte i Babilonia, encara que el llibre Les aritmetiques de Diofante es de prou mes nivell i presenta moltes solucions sorprenents per a equacions indeterminades dificils. Esta antiga sabiduria sobre resolucio d'equacions trobà, a la seua volta, acollida en el mon islamic, a on se li cridà “ciencia de reduccio i equilibri”.
En les civilisacions antigues s'escrivien les expressions algebraiques utilisant abreviatures soles ocasionalment; no obstant, en l'edat mija, els matematics null foren capaços de descriure qualsevol potencia de l'incognita X, i desenrollaren l'algebra fonamental dels polinomis, encara que sense usar els simbols moderns. Esta algebra incloïa multiplicar, dividir i extraure arrels quadrades de polinomis, aixina com el coneiximent de la teorema del binomi. El matematic, poeta i astronom persa Omar Khayyam mostrà com expressar les arrels d'equacions cubiques utilisant els segments obtinguts per interseccio de seccions coniques, encara que no fon capaç de trobar una formula per a les arrels.
Un alvanç important en l'algebra fon l'introduccio, en el sigle XVI, de simbols per a les incognites i per a les operacions i potencies algebraiques. Degut a este alvanç, el Llibre III de la Geometria (1637), escrit pel matematic i filosof frances René Descartes se sembla prou a un text modern d'algebra. No obstant, la contribució més important de Descarts a les matematiques fon el descobriment de la geometria analitica, que reduix la resolucio de problemes geometriques a la resolucio de problemes algebraiques. El seu llibre de geometria conte també els fonaments d'un curs de teoria d'equacions, incloent lo que el propi Descarts cridà la regla dels signes per a contar el numero d'arrels verdaderes (positives) i falses (negatives) d'una equacio. Durant el segle XVIII se continuà treballant en la teoria d'equacions i en 1799 el matematic alema Carl Friedrich Gauss publicà la demostracio de que tota equacio polinòmica te al menys una arrel en el pla complex.
En els tempss de Gauss, l'algebra havia entrat en la seua etapa moderna. El foc d'atencio se traslladà de les equacions polinòmiques a l'estudie de l'estructura de sistemes matematiques abstractes, qui axiomes estaven basats en el comportament d'objectes matematics, com els numeros complexos, que els matematics havien trobat a l'estudiar les equacions polinòmiques. Les quaternes foren descobertes pel matematic i astronom irlandes William Rowan Hamilton, qui desenrollà l'aritmetica dels numeros complexos per a les quaternes.
Despres del descobriment de Hamilton el matematic alema Hermann Grassmann començà a investigar els vectors. A pesar del seu caracter abstracte, el fisic estadounidenc J. W. Gibbs trobà en l'algebra vectorial un sistema de gran utilitat per a els fisics, del mateix modo que Hamilton havia fet en les quaternes. L'ampla influencia d'este enfocament abstracte portà a George Boole a escriure Investigacio sobre les lleis del pensament (1854), un tractament algebraic de la llogica basica. Des de llavors, l'algebra moderna —també cridada algebra abstracta— ha seguit evolucionant; s'han obtingut resultats importants i se li han trobat aplicacions en totes les branques de les matematiques i en moltes atres ciencies.quaternes foren descobertes pel matematic i astronom irlandes William Rowan Hamilton, qui desenrollà l'aritmetica dels numeros complexos per a les quaternes.
Clasificació
El camp pot dividir-se tentativament en:
- Àlgebra elemental. Inclou, entre atres, l'us de símbols, conjunts, variables, la definició d'expressions matemàtiques com ara funcions o polinomis i la seua factorisació(determinació de les seues rails). Este últim problema, més conegut com a resolució d'equacions polinomials, se sol considerar l'objectiu final de l'àlgebra clàssica, i de fet el teorema fonamental de l'àlgebra en garantisa la factibilitat.
- Àlgebra computacional, a on es arrepleguen els algorismes per a la manipulació d'objectes matemàtics.
- Àlgebra abstracta, també nomenada a voltes àlgebra moderna, a on es definixen axiomàticament, entre atres, les estructures algebraiques de grup, anell i cos. Inclou, entre atres:
- Àlgebra lineal, a on s'estudien les propietats específiques dels espais vectorials (incloent matrius).
- Àlgebra universal, a on s'estudien de forma general els sistemes formats per un conjunt i una colecció d'operacions sobre ell.
- Geometria algebraica, que combina l'àlgebra abstracta en la geometria.