Canvis

1227 bytes afegits ,  12:24 22 març 2025
sense resum d'edició
Llínea 16: Llínea 16:  
* Els diferents tipos de cantitats (números) han jugat un paper obvi i important en tots els aspectes quantitatius i qualitatius del desenroll de la cultura, la ciència i la tecnologia.
 
* Els diferents tipos de cantitats (números) han jugat un paper obvi i important en tots els aspectes quantitatius i qualitatius del desenroll de la cultura, la ciència i la tecnologia.
 
* L'estudi de l'estructura comença en considerar les diferents propietats dels [[número]]s, inicialment els [[números natural]] i els [[números enters]]. Les regles que dirigixen les operacions aritmètiques s'estudien en l'[[àlgebra elemental]], i les propietats més profundes dels números enters s'estudien en la [[teoria de números]]. Despuix, l'organisació de coneiximents elementals va produir els sistemes axiomàtics (teories), permetent el descobriment de conceptes estructurals que en l'actualitat dominen esta ciència (i.g. estructures categòriques). L'investigació de métodos per a resoldre equacions porta al camp del [[àlgebra abstracta]]. L'important concepte de [[vector (matemàtica)|vector]], generalisat a [[espai vectorial]], és estudiat en l'[[àlgebra llineal]] i pertany a les dos branques de l'estructura i l'espai.
 
* L'estudi de l'estructura comença en considerar les diferents propietats dels [[número]]s, inicialment els [[números natural]] i els [[números enters]]. Les regles que dirigixen les operacions aritmètiques s'estudien en l'[[àlgebra elemental]], i les propietats més profundes dels números enters s'estudien en la [[teoria de números]]. Despuix, l'organisació de coneiximents elementals va produir els sistemes axiomàtics (teories), permetent el descobriment de conceptes estructurals que en l'actualitat dominen esta ciència (i.g. estructures categòriques). L'investigació de métodos per a resoldre equacions porta al camp del [[àlgebra abstracta]]. L'important concepte de [[vector (matemàtica)|vector]], generalisat a [[espai vectorial]], és estudiat en l'[[àlgebra llineal]] i pertany a les dos branques de l'estructura i l'espai.
* L'estudi de l'espai origina la [[geometria]], primer la [[geometria euclídea]] i després la [[trigonometria]]. En la seua faceta alvançada el sorgiment de la topologia dona la necessària i correcta manera de pensar sobre les nocions de rodalia i continuïtat de les nostres concepcions espacials.
+
* L'estudi de l'espai origina la [[geometria]], primer la [[geometria euclídea]] i despuix la [[trigonometria]]. En la seua faceta alvançada el sorgiment de la topologia dona la necessària i correcta manera de pensar sobre les nocions de rodalia i continuïtat de les nostres concepcions espacials.
* La comprensió i descripció del canvi en variables mesurables és el tema central de les [[ciències naturals]] i del [[Càlcul infinitesimal|càlcul]]. Per a resoldre problemes que es dirigixen en forma natural a relacions entre una cantitat i la seua taxa de canvi, s'estudien les [[equació diferencial|equacions diferencials]] i de les seues solucions. Els números usats per a representar les cantitats contínues són els [[números reals]]. Per a estudiar els processos de canvi s'utilisa el concepte de [[funció matemàtica]]. Els conceptes de [[derivada]] i [[integral]], introduïts per [[Isaac Newton|Newton]] i [[Leibniz]], representen un paper clau en est estudi, i són objectes del Càlcul diferencial i integral i, sobre el rigor, s'ocupa l'[[Anàlisis matemàtic]]. És convenient per a molts fins introduir funció, derivació, integració en el conjunt C dels número complexos, aixina sorgixen el càlcul de variable complexa i l'[[anàlisis complex]]. L'[[anàlisis funcional]] consistix en estudiar els espais vectorials de dimensió infinita, problemes que la seua incògnita és una funció.
+
* La comprensió i descripció del canvi en variables mesurables és el tema central de les [[ciències naturals]] i del [[Càlcul infinitesimal|càlcul]]. Per a resoldre problemes que es dirigixen en forma natural a relacions entre una cantitat i la seua taxa de canvi, s'estudien les [[equació diferencial|equacions diferencials]] i de les seues solucions. Els números usats per a representar les cantitats contínues són els [[números reals]]. Per a estudiar els processos de canvi s'utilisa el concepte de [[funció matemàtica]]. Els conceptes de [[derivada]] i [[integral]], introduïts per [[Isaac Newton|Newton]] i [[Leibniz]], representen un paper clau en este estudi, i són objectes del Càlcul diferencial i integral i, sobre el rigor, s'ocupa l'[[Anàlisis matemàtic]]. És convenient per a molts fins introduir funció, derivació, integració en el conjunt C dels número complexos, aixina sorgixen el càlcul de variable complexa i l'[[anàlisis complex]]. L'[[anàlisis funcional]] consistix en estudiar els espais vectorials de dimensió infinita, problemes que la seua incògnita és una funció.
 +
 
 +
== Referències ==
 +
* Descartes, René (1996) Reglas para la dirección del espíritu, Introducción, traducción y notas de Juan Manuel Navarro Cordón, Madrid: Alianza pp. 85-86 ISBN 84-206-0034-2
 +
* Heath, Thomas Little (1921) A history of Greek mathematics: Vol 1, Oxford: The Clarendon Press p. 10
 +
*  Laserna, David Blanco (2005) Emmy Noether: Una matemática ideal, Madrid: Nivola ISBN 978-84-92493-79-1
 +
* Le Lionnais, Francois (1965). Las grandes corrientes del pensamiento matemático. Buenos Aires: Eudeba
 +
* Stewart, Ian (2004) De aquí al infinito. Las matemáticas de hoy, Barcelona: Crítica ISBN 84-8432-547-4
    +
== Bibliografia ==
 +
* Bell, Eric Temple (1944) La reina de las ciencias, Buenos Aires: Losada
 +
* Peterson, Ivars. (2001). Mathematical Tourist, New and Updated Snapshots of Modern Mathematics. Owl Books. ISBN 0-8050-7159-8
 +
* Popper, Karl (1980) La lógica de la investigación científica, Madrid: Tecnos ISBN: 84-309-0711-4
 +
* Riehm, Carl (August 2002). «The Early History of the Fields Medal»
 +
* Ziman, John Michael (1972) El conocimiento público : un ensayo sobre la dimensión social de la ciencia, México: Fondo de Cultura Económica
 +
 +
== Enllaços externs ==
 +
{{Commonscat|Elementary mathematics}}
    
[[Categoria:Ciències naturals]]
 
[[Categoria:Ciències naturals]]
 
[[Categoria:Matemàtiques]]
 
[[Categoria:Matemàtiques]]
70 251

edicions