Número complex

De L'Enciclopèdia, la wikipedia en valencià
Revisió de 07:04 25 oct 2024 per Jose2 (Discussió | contribucions)
(difs.) ← Revisió anterior | Revisió actual (difs.) | Revisió següent → (difs.)
Anar a la navegació Anar a la busca
Ilustració del pla complex. Els números reals es troben en l'eix de coordenades horisontal i els imaginaris en l'eix vertical.

Els números complexos són una extensió dels número real i formen el mínim cos algebraicament tancat. [1] El conjunt dels números complexos es designa en la notació <math>\scriptstyle \mathbb{C}</math>, sent <math>\scriptstyle \mathbb{R}</math> el conjunt dels números reals es complix que <math>\scriptstyle \mathbb{R}\sub\mathbb{C}</math> (<math>\scriptstyle \mathbb{R}</math> està estrictament contingut en <math>\scriptstyle \mathbb{C}</math>). Els números complexos inclouen totes les raïls dels polinomis, a diferència dels reals. Tot número complex pot representar-se com la suma d'un número real i un número imaginari (que és un múltiple real de la unitat imaginària, que s'indica en la lletra i), o en forma polar.

Els números complexos són la ferramenta de treball de l'àlgebra, anàlisis, aixina com de branques de les matemàtiques pures i aplicades com a variable complexa, equacions diferencials, facilitació de càlcul d'integrals, en aerodinàmica, hidrodinàmica i electromagnetisme entre atres de gran importància. Ademés els números complexos s'utilisen moltísimes voltes en matemàtiques, en molts camps de la física (notòriament en la mecànica quàntica) i en ingenieria, especialment en la electrònica i les telecomunicacions, per la seua utilitat per a representar les ones electromagnètiques i la corrent elèctrica.

Referències[editar | editar còdic]

  1. Ampliación del manual "Ecuaciones algebraicas" de Uspenski