Diferència entre les revisions de "Equació de segon grau"

De L'Enciclopèdia, la wikipedia en valencià
Anar a la navegació Anar a la busca
 
Llínea 1: Llínea 1:
[[Archivo:Ecuación cuadrática.svg|thumb|250px|Els punts comuns d'una paràbola en l'eix X (recta y = 0), les [[raïl d'una equació|raïls]], són les solucions reals de l'equació quadràtica.]]
+
[[Archiu:Ecuación cuadrática.svg|thumb|250px|Els punts comuns d'una paràbola en l'eix X (recta y = 0), les [[raïl d'una equació|raïls]], són les solucions reals de l'equació quadràtica.]]
  
 
Una '''equació de segon grau''' <ref>{{springer|título=Ecuación cuadrática|id=Quadratic_equation&oldid=14167}}</ref><ref>{{MathWorld|QuadraticEquation|Ecuación cuadrática}}</ref> o '''equació quadràtica d'una variable''' és una [[equació]] que té la forma d'una suma algebraica de térmens el grau màxim dels quals és dos, és dir, una equació quadràtica pot ser representada per un [[polinomi]] de [[quadrat (àlgebra)|segon grau]] o polinomi quadràtic. L'expressió canònica general d'una equació quadràtica d'una variable és:
 
Una '''equació de segon grau''' <ref>{{springer|título=Ecuación cuadrática|id=Quadratic_equation&oldid=14167}}</ref><ref>{{MathWorld|QuadraticEquation|Ecuación cuadrática}}</ref> o '''equació quadràtica d'una variable''' és una [[equació]] que té la forma d'una suma algebraica de térmens el grau màxim dels quals és dos, és dir, una equació quadràtica pot ser representada per un [[polinomi]] de [[quadrat (àlgebra)|segon grau]] o polinomi quadràtic. L'expressió canònica general d'una equació quadràtica d'una variable és:

Revisió de 10:24 21 nov 2016

Els punts comuns d'una paràbola en l'eix X (recta y = 0), les raïls, són les solucions reals de l'equació quadràtica.

Una equació de segon grau [1][2] o equació quadràtica d'una variable és una equació que té la forma d'una suma algebraica de térmens el grau màxim dels quals és dos, és dir, una equació quadràtica pot ser representada per un polinomi de segon grau o polinomi quadràtic. L'expressió canònica general d'una equació quadràtica d'una variable és:

{{{1}}}

on x és la variable, i a, b i c constants; a és el coeficient quadràtic (distint de 0), b el coeficient llineal i c és el terme independent. Este polinomi es pot interpretar per mig de la gràfica d'una funció quadràtica, és dir, per una paràbola. Esta representació gràfica és útil, perque les interseccions o punt tangencial d'esta gràfica, en el cas d'existir, en el eix X coincidixen en les solucions reals de l'equació.