Diferència entre les revisions de "Teorema de Pitàgores"

De L'Enciclopèdia, la wikipedia en valencià
Anar a la navegació Anar a la busca
m (Text reemplaça - ' formula ' a ' fòrmula ')
Llínea 5: Llínea 5:
 
{{teorema|títul= Teorema de Pitàgores|En tot [[triàngul rectàngul]] el cuadrat de la [[hipotenusa]] es igual a la suma dels cuadrats dels [[catet]]s.|2= [[Pitàgores]]}}
 
{{teorema|títul= Teorema de Pitàgores|En tot [[triàngul rectàngul]] el cuadrat de la [[hipotenusa]] es igual a la suma dels cuadrats dels [[catet]]s.|2= [[Pitàgores]]}}
  
Si un triàngul rectàngul té [[catet]]s de llongituts <math> a \,</math> i <math> b \,</math>, i la mesura de la [[hipotenusa]] és <math> c \,</math>, es formula que:
+
Si un triàngul rectàngul té [[catet]]s de llongituts <math> a \,</math> i <math> b \,</math>, i la mesura de la [[hipotenusa]] és <math> c \,</math>, es fòrmula que:
 
{{  Equació |<math>  c^2 = a^2 + b^2 \,</math>|1}}
 
{{  Equació |<math>  c^2 = a^2 + b^2 \,</math>|1}}
  

Revisió de 20:56 20 nov 2018

Pythagorean right angle.svg

El teorema de Pitàgores establix que en tot triàngul rectàngul, el cuadrat de la llongitut de la hipotenusa és igual a la suma dels cuadrats de les respectives llongituts dels catets. És la proposició més coneguda, entre unes atres, de les que tenen nom propi de la matemàtica.[1]


En tot triàngul rectàngul el cuadrat de la hipotenusa es igual a la suma dels cuadrats dels catets.


Si un triàngul rectàngul té catets de llongituts <math> a \,</math> i <math> b \,</math>, i la mesura de la hipotenusa és <math> c \,</math>, es fòrmula que:

1

De la equació (1) es deduïxen fàcilment tres corolaris de verificació algebraica i aplicació pràctica:

Plantilla:Pitàgores (fòrmules pràctiques)

Història

Respecte dels babilonis hi ha esta nota:

Des del punt de vista matemàtic, les novetats més importants que registren els texts babilònics es referixen a la solució algebraica d'equacions llineals i quadràtiques, i el coneiximent de la cridada "teorema de Pitàgores" i de les seues conseqüències numèriques.

El teorema de Pitàgores té este nom perque la seua demostració, sobretot, és esforç de la mística escola pitagórica. Anteriorment, en Mesopotamia i el Antic Egipte es coneixien ternes de valors que es corresponien en els costats d'un triàngul rectàngul, i s'utilisaven per a resoldre problemes referents als citats triànguls, tal com s'indica en algunes tablilles i papirs. No obstant, no ha perdurat cap document que exponga teòricament la seua relació.[3]La piràmide de Kefrén, datada en el sigle XXVI a.C., va ser la primera gran piràmide que es va construir basant-se en el cridat triàngul sagrat egipcíac, de proporcions 3-4-5.

Enllaços externs


  1. Ribnikov. Història de la matemàtica. editorial Mir. Moscou.
  2. Julio Rey Pastor y José Babini. Historia de la matemática, pág. 22; ISBN 84-7432-807-1
  3. Marc-Alain Ouaknin. El misterio de las cifras, pp 221-224. ISBN 9788496222465