Diferència entre les revisions de "Efecte Compton"
Llínea 17: | Llínea 17: | ||
* Ridwan, S. M., El-Tayyeb, F., Hainfeld, J. F., & Smilowitz, H. M. (2020). Distributions of intravenous injected iodine nanoparticles in orthotopic U87 human glioma xenografts over time and tumor therapy. Nanomedicine, 15(24), 2369-2383 | * Ridwan, S. M., El-Tayyeb, F., Hainfeld, J. F., & Smilowitz, H. M. (2020). Distributions of intravenous injected iodine nanoparticles in orthotopic U87 human glioma xenografts over time and tumor therapy. Nanomedicine, 15(24), 2369-2383 | ||
− | ==Bibliografia == | + | == Bibliografia == |
* Compton, Arthur H. (May 1923). «A Quantum Theory of the Scattering of X-Rays by Light Elements». Physical Review 21 (5): 483-502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483. (trabajo original de 1923 en el sitio web de la American Physical Society) | * Compton, Arthur H. (May 1923). «A Quantum Theory of the Scattering of X-Rays by Light Elements». Physical Review 21 (5): 483-502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483. (trabajo original de 1923 en el sitio web de la American Physical Society) |
Última revisió del 15:52 28 jun 2024
L'efecte Compton (o dispersió Compton) consistix en l'aument de la llongitut d'ona d'un fotó quan choca en un electró lliure i pert part de la seua energia. La freqüència o la llongitut d'ona de la radiació dispersada depén únicament de l'àngul de dispersió.
Descobriment i rellevància històrica[editar | editar còdic]
L'Efecte Compton va ser estudiat pel físic Arthur Compton en l'any 1923, quí va poder explicar-ho utilisant la noció quàntica de la radiació electromagnètica com quants d'energia i la mecànica relativista de Einstein. L'efecte Compton va constituir la demostració final de la naturalea quàntica de la llum despuix dels estudis de Planck sobre el cos negre i l'explicació de Albert Einstein del efecte fotoelèctric.
Compton va descobrir este efecte al experimentar en rajos X, els quals varen ser dirigits contra una de les cares d'un bloc de carbó. En chocar els rajos X en el bloc es varen difondre en vàries direccions; a mesura que l'àngul dels rajos difosos aumentava, també s'incrementava la seua llongitut d'ona. En base a la teoria quàntica, Compton va afirmar que l'efecte es devia a que el quant de rajos X actua com una partícula material en chocar contra l'electró, per lo que l'energia cinètica que el quant li comunica a l'electró li representa una pèrdua en la seua energia original.
Com a conseqüència d'estos estudis Compton va guanyar el Premi Nobel de Física en l'any 1927.
Este efecte és d'especial rellevància científica, ya que no pot ser explicat a través de la naturalea ondulatòria de la llum. La llum deu comportar-se com a partícula per a poder explicar estes observacions, per lo que adquirix una dualitat ona corpúscul característica de la mecànica quàntica.
Referències[editar | editar còdic]
- C. Moore (1995). «Observación de la transición de la dispersión Thomson a Compton en interacciones multifotónicas ópticas con electrones».
- P. Christillin (1986). «Dispersión Compton nuclear». J. Phys. G: Nucl. Phys. 12 (9): 837-851. Bibcode:1986JPhG...12..837C. S2CID 250783416. doi:10.1088/0305-4616/12/9/008
- Pérez Montiel, Héctor (2011). «17». Física general. Grupo Editorial Patria
- Ridwan, S. M., El-Tayyeb, F., Hainfeld, J. F., & Smilowitz, H. M. (2020). Distributions of intravenous injected iodine nanoparticles in orthotopic U87 human glioma xenografts over time and tumor therapy. Nanomedicine, 15(24), 2369-2383
Bibliografia[editar | editar còdic]
- Compton, Arthur H. (May 1923). «A Quantum Theory of the Scattering of X-Rays by Light Elements». Physical Review 21 (5): 483-502. Bibcode:1923PhRv...21..483C. doi:10.1103/PhysRev.21.483. (trabajo original de 1923 en el sitio web de la American Physical Society)
- S. Chen; H. Avakian; V. Burkert; L. Vandenaweele; P. Eugenio; the CLAS collaboration; Ambrozewicz; Anghinolfi; Asryan; Bagdasaryan; Baillie; Ball; Baltzell; Barrow; Batourine; Battaglieri; Beard; Bedlinskiy; Bektasoglu; Bellis; Benmouna; Berman; Biselli; Bonner; Bouchigny; Boiarinov; Bosted; Bradford; Branford et al. (2006). «Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target». Physical Review Letters 97 (7): 072002. Bibcode:2006PhRvL..97g2002C. PMID 17026221. S2CID 15326395. arXiv:hep-ex/0605012. doi:10.1103/PhysRevLett.97.072002
- Stuewer, Roger H. (1975), The Compton Effect: Turning Point in Physics (New York: Science History Publications)