Diferència entre les revisions de "Llongitut"
(Pàgina nova, en el contingut: « thumb|right|Un [[Ortoedre|paralelepípet rectangular mostrant els noms de les seues dimensi...») |
(Sense diferències)
|
Revisió de 18:14 10 set 2016
[[Archivo:Paralelepipedo mostrando los nombres de sus medidas.PNG|thumb|right|Un paralelepípet rectangular mostrant els noms de les seues dimensions, llarc, ample, i alt o altura.]] thumb|right|Esquema elemental de posicionamiento espacial, consistente en un marco de referencia respecto a un origen dado.
La llongitut és un concepte mètric definible per a entitats geomètriques sobre la que s'ha definit una distància. Més concretament donat un segment, curva o llínea finita, es pot definir la seua llongitut a partir de la noció de distància. No obstant, no deu confondre's llongitut en distància, ya que per a una curva general (no per a un segment recte) la distància entre dos punts qualssevol de la mateixa és sempre inferior a la llongitut de la curva compresa entre eixos dos punts. Igualment la noció matemàtica de llongitut es pot identificar en l'una magnitut física que determinada per la distància física.
La llongitut és un concepte mètric definible per a entitats geomètriques sobre la que s'ha definit una distància. Més concretament donat un segment, curva o llínea finita, es pot definir la seua llongitut a partir de la noció de distància. No obstant, no deu confondre's llongitut en distància, ya que per a una curva general (no per a un segment recte) la distància entre dos punts qualssevol de la mateixa és sempre inferior a la llongitut de la curva compresa entre eixos dos punts. Igualment la noció matemàtica de llongitut es pot identificar en l'una magnitut física que determinada per la distància física.
La llongitut és una de les #magnitut físiques fonamentals, mentres que no pot ser definida en térmens d'atres magnitudes que es poden medir. En molts sistemes de mesura, la llongitut és una magnitut fonamental, de la qual deriven unes atres.[1]
La llongitut és una mesura d'una dimensió (llineal; per eixemple la distància en m), mentres que el àrea és una mesura de dos dimensions (a la garrofa; per eixemple m²), i el volum és una mesura de tres dimensions (cúbica; per eixemple m³).
No obstant, segons la teoria especial de la relativitat (Albert Einstein, 1905), la llongitut no és una propietat intrínseca de cap objecte ya que dos observadors podrien medir el mateix objecte i obtindre resultats diferents (contracció de Lorentz) [2]
El llarc o llongitut dimensional d'un objecte és la mesura del seu eix tridimensional i. Esta és la manera tradicional en que es nomenava a la part més llarga d'un objecte (sobre la seua base horisontal i no el seu alt vertical). En coordenades cartesianes bidimensionals, on solament existixen els eixos xy no es denomina «llarc». Els valores x indiquen l'ample (eix horisontal), i els i l'alt (eix vertical).[3]
Historia
Les medicions han segut importants des de que els sers humans es varen establir, abandonant el seu estil de vida #nómada i va començar la agricultura, la construcció d'assentaments estables, ocupant el terreny i negociant en els seus veïns. Conforme la societat s'ha tornat més orientada cap a per la tecnologia, s'han requerit majors precisió en les mesures en un conjunt de camps que s'incrementa cada volta més, des de la microelectrònica fins a les distàncies interplanetàries.[4]
Una de les unitats més antigues de llongitut va ser el colze. El colze va ser definit com la llongitut del braç des de la punta del dit mig fins al colze. Atres unitats menors varen ser el peu (unitat), la mà o el dit. El colze podia variar considerablement pels diferents tamanys entre una persona i una atra.[4]
Despuix de la publicació de la relativitat especial de Albert Einstein, la llongitut no va poder ya vore's com una magnitut invariant en tots els marcs de referència. Per esta raó, una regla que medixca un metro de llongitut en un marc de referència no medirà la mateixa cantitat en un atre marc de referència que es moga a una velocitat relativa al primer marc. Açò significa que la llongitut és variable, depenent de l'observador.[2]
Noció matemàtica
La noció de llongitut es va definir en primer lloc per a segments rectes. La noció *elmental de distància euclídea va servir per a definir la llongitut d'un segment recte, com la distància entre els seus extrems. El següent pas va ser definir la llongitut d'una curva (círcul, elipse, etc), per a estes nocions existia un procediment físic que consistia en enrollar un cordell inextensible al voltant d'una figura corba, marcar cert punt sobre el ordel i estirar-ho de nou per a medir la distància recta a lo llarc del cordell.
Bidimensional
La moderna noció de llongitut es basa fonamentalment en la noció definida dins de la geometria diferencial de curves. Una atra forma més pròxima a la noció original de llongitut és l'aproximació d'una curva diferenciable per mig d'una poligonal, aixina en época d'Arquimedes ya havia segut possible determinar en molta exactitut el perímetro d'una circumferència per mig de successions de polígons inscrits i circumscrits a la circumferència. Ya que el perímetro d'un polígon pot ser determinat a partir de triànguls i, en particular, usant el teorema de Pitàgores. El desenroll del càlcul infinitesimal va permetre estendre la noció de llongitut a curves analítiques molt complicades per als quals no és senzill aplicar els métodos dels antics matemàtics grecs d'aproximació per mig de poligonals.
Fins al sigle XIX es va assumir que la llongitut d'una curva acotada, devia ser finita, no obstant, durant el sigle XIX matemàtics com Karl Weierstras varen trobar que existixen curves contínues que no són diferenciables en cap punt, i per tant, per als quals no està definida la noció de llongitut amprada en la geometria diferencial. Posteriorment es va demostrar que corbes contínues com la curva de *Koch són corbes tancades que tanca un àrea finita, pero no obstant són de llongitut infinita (de fet esta curva mostra que un àrea acotada pot estar delimitada per un perímetro de llongitut infinita).
- Est artícul fon creat a partir de la traducció de l'artícul es.wikipedia.org/wiki/Longitud de la Wikipedia en espanyol, baix llicència Creative Commons-BY-SA.