Diferència entre les revisions de "Trigonometria"

De L'Enciclopèdia, la wikipedia en valencià
Anar a la navegació Anar a la busca
Llínea 7: Llínea 7:
  
 
== Història ==
 
== Història ==
{{ap|Història de la trigonometria}}
+
{{|Història de la trigonometria}}
 
[[Archiu:Plimpton 322.jpg|thumb|Tablilla [[babilònia]] Plimpton 322.]]
 
[[Archiu:Plimpton 322.jpg|thumb|Tablilla [[babilònia]] Plimpton 322.]]
 
Els antics egipcíacs i els babilonis coneixien ya les teoremes sobre les proporcions dels costats dels triànguls semblants. Pero les societats prehelénicas carien de la noció d'una mesura de l'àngul i per lo tant, els costats dels triànguls es varen estudiar en la seua mesura, un camp que es podria cridar trilaterometría.
 
Els antics egipcíacs i els babilonis coneixien ya les teoremes sobre les proporcions dels costats dels triànguls semblants. Pero les societats prehelénicas carien de la noció d'una mesura de l'àngul i per lo tant, els costats dels triànguls es varen estudiar en la seua mesura, un camp que es podria cridar trilaterometría.
Llínea 13: Llínea 13:
 
Els astrònoms babilonis varen portar registres detallats sobre l'eixida i posta de les estreles, el moviment dels planetes i els eclipses solars i lunar, tot la qual cosa requerix la familiaritat en la distància angular mesura sobre l'esfera celest. Sobre la base de l'interpretació d'una tablilla cuneïforme [[Plimpton 322]], alguns fins i tot han afirmat que els antics babilonis tenien una taula d'secante. Hui, no obstant, hi ha un gran debat sobre si es tracta d'una taula de ternes pitagóriques, una taula de solucions d'equacions de segon grau, o una taula trigonomètrica.
 
Els astrònoms babilonis varen portar registres detallats sobre l'eixida i posta de les estreles, el moviment dels planetes i els eclipses solars i lunar, tot la qual cosa requerix la familiaritat en la distància angular mesura sobre l'esfera celest. Sobre la base de l'interpretació d'una tablilla cuneïforme [[Plimpton 322]], alguns fins i tot han afirmat que els antics babilonis tenien una taula d'secante. Hui, no obstant, hi ha un gran debat sobre si es tracta d'una taula de ternes pitagóriques, una taula de solucions d'equacions de segon grau, o una taula trigonomètrica.
 
[[Archiu:Rhind Mathematical Papyrus.jpg|thumb|Papiro de Ahmes]]
 
[[Archiu:Rhind Mathematical Papyrus.jpg|thumb|Papiro de Ahmes]]
 +
 +
Els egipcíacs, en el segon mileni abans de Crist, utilisaven una forma primitiva de la trigonometria, per a la construcció de les piràmides. El ''[[Papir de Ahmes]]'', escrit per l'escriga egipcíac Ahmes (c. 1680-1620 a. C.), conté el següent problema relacionat en la trigonometria:
 +
 +
: Si una piràmide és de 250 colzes d'alt i el costat de la seua base és de 360 colzes de llarc, ¿quin és el seu [[*Seked]]?
 +
 +
La solució al problema és la relació entre la mitat del costat de la base de la piràmide i la seua altura. En atres paraules, la mesura que es troba per a la ''seked'' és la [[cotangent]] de l'àngul que formen la base de la piràmide i la seua respectiva cara.
  
  

Revisió de 18:52 26 ago 2016

Triàngul en raons trigonomètriques

La trigonometria és una branca de la matemàtica, significat de la qual etimològicament és 'la medició dels triànguls'. Deriva dels termes grecs τριγωνο trigōno 'triángul' i μετρον metró 'mesura'.[1]

En térmes generals, la trigonometria és el estudi de les raons trigonomètriques: seno i cosecant, coseno i secant, tangent i cotangent. Intervié directa o indirectament en les demés branques de la matemática y s'aplica en tots aquells àmbits a on se requerixen mesures de precisió. La trigonometria s'aplica a atres branques de la geometria, com és el cas del estudi de les esferes en la geometria de l'espai.

Poseix numeroses aplicacions, entre les que s'encontren: las tècniques de triangulació, per eixemple, són usades en astronomia per a medir distàncies a estreles pròximes, en la medició de distàncies entre punts geogràfics, i en sistemes de navegació per satèlits.

Història

{{|Història de la trigonometria}}

Tablilla babilònia Plimpton 322.

Els antics egipcíacs i els babilonis coneixien ya les teoremes sobre les proporcions dels costats dels triànguls semblants. Pero les societats prehelénicas carien de la noció d'una mesura de l'àngul i per lo tant, els costats dels triànguls es varen estudiar en la seua mesura, un camp que es podria cridar trilaterometría.

Els astrònoms babilonis varen portar registres detallats sobre l'eixida i posta de les estreles, el moviment dels planetes i els eclipses solars i lunar, tot la qual cosa requerix la familiaritat en la distància angular mesura sobre l'esfera celest. Sobre la base de l'interpretació d'una tablilla cuneïforme Plimpton 322, alguns fins i tot han afirmat que els antics babilonis tenien una taula d'secante. Hui, no obstant, hi ha un gran debat sobre si es tracta d'una taula de ternes pitagóriques, una taula de solucions d'equacions de segon grau, o una taula trigonomètrica.

Papiro de Ahmes

Els egipcíacs, en el segon mileni abans de Crist, utilisaven una forma primitiva de la trigonometria, per a la construcció de les piràmides. El Papir de Ahmes, escrit per l'escriga egipcíac Ahmes (c. 1680-1620 a. C.), conté el següent problema relacionat en la trigonometria:

Si una piràmide és de 250 colzes d'alt i el costat de la seua base és de 360 colzes de llarc, ¿quin és el seu *Seked?

La solució al problema és la relació entre la mitat del costat de la base de la piràmide i la seua altura. En atres paraules, la mesura que es troba per a la seked és la cotangent de l'àngul que formen la base de la piràmide i la seua respectiva cara.


Referències

Enllaços externs

Commons