Canvis

Anar a la navegació Anar a la busca
10 bytes eliminats ,  17:55 30 abr 2015
m
Text reemplaça - 'després' a 'despuix'
Llínea 8: Llínea 8:  
Curiosament, fon el [[Astrofísica|astrofísic]] anglés [[Fred Hoyle]], un dels detractors d'esta teoria i, a la seua vegada, un dels principals defensors de la [[Teoria de l'Estat Estacionari|teoria de l'estat estacionari]], qui va dir per a burlar-se que el model descrit era només un ''Big bang'' (gran explosió) durant una discussió de la [[BBC]] en [[1949]]. No obstant, hi ha que tindre en conte que en l'inici de l'univers ni hi hagué explosió ni fon gran, puix en rigor va sorgir d'una «singularitat» infinitament chicoteta, seguida de l'expansió del propi espai.<ref>Michio Kaku, ''L'univers d'Éinstein'', p. 109.</ref>  
 
Curiosament, fon el [[Astrofísica|astrofísic]] anglés [[Fred Hoyle]], un dels detractors d'esta teoria i, a la seua vegada, un dels principals defensors de la [[Teoria de l'Estat Estacionari|teoria de l'estat estacionari]], qui va dir per a burlar-se que el model descrit era només un ''Big bang'' (gran explosió) durant una discussió de la [[BBC]] en [[1949]]. No obstant, hi ha que tindre en conte que en l'inici de l'univers ni hi hagué explosió ni fon gran, puix en rigor va sorgir d'una «singularitat» infinitament chicoteta, seguida de l'expansió del propi espai.<ref>Michio Kaku, ''L'univers d'Éinstein'', p. 109.</ref>  
   −
L'idea central del Big Bang és que la teoria de la relativitat general pot combinar-se en les observacions de [[isotropia]] i [[homogeneïtat]] a gran escala de la distribució de [[galàxia|galàxies]] i els canvis de posició entre elles, permetent extrapolar les condicions de l'univers abans o després en el [[temps]].
+
L'idea central del Big Bang és que la teoria de la relativitat general pot combinar-se en les observacions de [[isotropia]] i [[homogeneïtat]] a gran escala de la distribució de [[galàxia|galàxies]] i els canvis de posició entre elles, permetent extrapolar les condicions de l'univers abans o despuix en el [[temps]].
    
Una conseqüència de tots els models de Big Bang és que, en el passat, l'univers tenia una [[temperatura]] més alta i major [[densitat]] i, per tant, les condicions de l'univers actual són molt diferents de les condicions de l'univers passat A partir d'este model, [[George Gamow]] en [[1948]] pogué predir que deuria d'haver evidències d'un fenomen que més tart seria batejat com [[radiació de fondo de microones]].
 
Una conseqüència de tots els models de Big Bang és que, en el passat, l'univers tenia una [[temperatura]] més alta i major [[densitat]] i, per tant, les condicions de l'univers actual són molt diferents de les condicions de l'univers passat A partir d'este model, [[George Gamow]] en [[1948]] pogué predir que deuria d'haver evidències d'un fenomen que més tart seria batejat com [[radiació de fondo de microones]].
    
== Breu història de la seua génesis i desenroll ==
 
== Breu història de la seua génesis i desenroll ==
Per a arribar al model del Big Bang, molts científics, en diversos estudis, han anat construint el camí que porta a la génesis d'esta explicació. Els treballs de [[Alexander Friedman]], de l'any [[1922]], i de [[Georges Lemaître]], de [[1927]], utilisaren la teoria de la relativitat per a demostrar que l'univers estava en moviment constant. Poc després, en [[1929]], l'astrònom [[Estats Units|estatunidenc]] [[Edwin Hubble]] ([[1889]]-[[1953]]) va descobrir galàxies més allà de la [[Via Làctea]] que s'alluntaven de mosatros, com si l'univers s'expandira constantment. En [[1948]], el físic [[Rússia|rus]] nacionalisat nortamericà, [[George Gamow]] ([[1904]]-[[1968]]), va plantejar que l'univers es creà a partir d'una gran explosió (Big Bang). Recentment, ingenis espacials posats en òrbita ([[COBE]]) han conseguit "sentir" els vestigis d'esta jagantina explosió primigènia.
+
Per a arribar al model del Big Bang, molts científics, en diversos estudis, han anat construint el camí que porta a la génesis d'esta explicació. Els treballs de [[Alexander Friedman]], de l'any [[1922]], i de [[Georges Lemaître]], de [[1927]], utilisaren la teoria de la relativitat per a demostrar que l'univers estava en moviment constant. Poc despuix, en [[1929]], l'astrònom [[Estats Units|estatunidenc]] [[Edwin Hubble]] ([[1889]]-[[1953]]) va descobrir galàxies més allà de la [[Via Làctea]] que s'alluntaven de mosatros, com si l'univers s'expandira constantment. En [[1948]], el físic [[Rússia|rus]] nacionalisat nortamericà, [[George Gamow]] ([[1904]]-[[1968]]), va plantejar que l'univers es creà a partir d'una gran explosió (Big Bang). Recentment, ingenis espacials posats en òrbita ([[COBE]]) han conseguit "sentir" els vestigis d'esta jagantina explosió primigènia.
    
Depenent de la cantitat de matèria en l'univers, este pot expandir-se indefinidament o frenar la seua expansió lentament, fins a produir-se una contracció universal. La fi d'eixa contracció es coneix en un terme contrari al Big Bang: el ''[[Big Crunch]] '' o Gran Colapse. Si l'univers es troba en un punt crític, pot mantindre's estable ''[[locucions latinas#A - E|ad eternum]] ''.
 
Depenent de la cantitat de matèria en l'univers, este pot expandir-se indefinidament o frenar la seua expansió lentament, fins a produir-se una contracció universal. La fi d'eixa contracció es coneix en un terme contrari al Big Bang: el ''[[Big Crunch]] '' o Gran Colapse. Si l'univers es troba en un punt crític, pot mantindre's estable ''[[locucions latinas#A - E|ad eternum]] ''.
   −
La teoria del Big Bang es va desenrollar a partir d'observacions i alvanços teòrics. Per mig d'observacions, en la década de [[1910]], l'astrònom nort-americà [[Vesto Melvin Slipher|Vesto Slipher]] i, després d'ell, [[Carl Wilhelm Wirtz]], d'[[Estrasburc]], determinaren que la major part de les [[nebuloses espirals]] s'allunten de la Terra; pero no aplegaren a donar-se conte de les implicacions cosmològiques d'esta observació, ni tampoc del fet que les supostes [[nebulosa|nebuloses]] eren en realitat [[galàxies]] exteriors a la nostra [[Via Làctea]].
+
La teoria del Big Bang es va desenrollar a partir d'observacions i alvanços teòrics. Per mig d'observacions, en la década de [[1910]], l'astrònom nort-americà [[Vesto Melvin Slipher|Vesto Slipher]] i, despuix d'ell, [[Carl Wilhelm Wirtz]], d'[[Estrasburc]], determinaren que la major part de les [[nebuloses espirals]] s'allunten de la Terra; pero no aplegaren a donar-se conte de les implicacions cosmològiques d'esta observació, ni tampoc del fet que les supostes [[nebulosa|nebuloses]] eren en realitat [[galàxies]] exteriors a la nostra [[Via Làctea]].
    
Ademés, la teoria d'[[Albert Éinstein]] sobre la [[relativitat general]] (segona década del [[sigle XX]]) no admet solucions estàtiques (és dir, l'univers ha d'estar en expansió o en contracció), resultat que ell mateix va considerar equivocat, i tractà de corregir-ho agregant la [[constant cosmològica]]. El primer a aplicar formalment la [[relativitat]] a la [[cosmologia]], sense considerar la [[constant cosmològica]], fon [[Alexander Friedman]], les l[equació|equacions]] del qual descriuen l'[[univers]] [[Friedman-Lemaître-Robertson-Walker]], que pot expandir-se o contraure's.
 
Ademés, la teoria d'[[Albert Éinstein]] sobre la [[relativitat general]] (segona década del [[sigle XX]]) no admet solucions estàtiques (és dir, l'univers ha d'estar en expansió o en contracció), resultat que ell mateix va considerar equivocat, i tractà de corregir-ho agregant la [[constant cosmològica]]. El primer a aplicar formalment la [[relativitat]] a la [[cosmologia]], sense considerar la [[constant cosmològica]], fon [[Alexander Friedman]], les l[equació|equacions]] del qual descriuen l'[[univers]] [[Friedman-Lemaître-Robertson-Walker]], que pot expandir-se o contraure's.
Llínea 41: Llínea 41:  
L'univers en els seus primers moments estava ple [[homogeneïtat|homogénea]] e [[isotropia|isòtropament]] d'una [[energia]] molt densa i tenia una temperatura i pressió concomitants. Es va expandir i es va gelar, experimentant [[canvis de fase]] anàlecs a l'[[ebullició|condensació]] del vapor o a la congelació de l'aigua, pero relacionats en les [[física de partícules|partícules elementals]].
 
L'univers en els seus primers moments estava ple [[homogeneïtat|homogénea]] e [[isotropia|isòtropament]] d'una [[energia]] molt densa i tenia una temperatura i pressió concomitants. Es va expandir i es va gelar, experimentant [[canvis de fase]] anàlecs a l'[[ebullició|condensació]] del vapor o a la congelació de l'aigua, pero relacionats en les [[física de partícules|partícules elementals]].
   −
Aproximadament 10<sup>-35</sup> segons després de l'[[época de Planck]] un canvi de fase causà que l'univers s'expandira de forma [[creiximent exponencial|exponencial]] durant un periodo denominat [[inflació còsmica]]. A l'acabar l'[[inflació]], els components materials de l'univers quedaren en la forma d'un [[plasma de quarks-gluons]], on totes les parts que ho formaven estaven en moviment en forma [[relativitat|relativista]]. En el creiximent en grandària de l'univers, la temperatura va descendir. A certa temperatura, i a causa d'un canvi encara desconegut denominat [[bariogénesis]], els [[quark]]s i els [[gluó|gluons]] es combinaren en [[barió|barions]] com ara el [[protó]] i el [[neutró]], produint d'alguna manera la [[asimetria]] observada actualment entre la [[matèria]] i la [[antimatèria]]. Les temperatures encara més baixes van conduir a nous canvis de fase, que trencaren la [[simetria]], aixina que els donaren la seua forma actual a les [[forces fonamentals|forces fonamentals de la física]] i a les [[partícules elementals]]. Més tart, protons i neutrons es van combinar per a formar els [[núcleus]] de [[deuteri]] i de [[heli]], en un procés denominat [[nucleosíntesis primordial]]. Al gelar-se l'univers, la matèria gradualment va deixar de moure's de forma relativista i la seua densitat d'energia va començar a dominar gravitacionalment sobre la [[radiació]]. Passats 300.000 anys, els [[electró|electrons]] i els núcleus es combinaren per a formar els [[àtom]]s (majoritàriament d'[[hidrogen]]). Per això, la radiació es desacoplà dels àtoms i continuà per l'espai pràcticament sense obstàculs. Esta és la [[radiació de fondo de microones]].
+
Aproximadament 10<sup>-35</sup> segons despuix de l'[[época de Planck]] un canvi de fase causà que l'univers s'expandira de forma [[creiximent exponencial|exponencial]] durant un periodo denominat [[inflació còsmica]]. A l'acabar l'[[inflació]], els components materials de l'univers quedaren en la forma d'un [[plasma de quarks-gluons]], on totes les parts que ho formaven estaven en moviment en forma [[relativitat|relativista]]. En el creiximent en grandària de l'univers, la temperatura va descendir. A certa temperatura, i a causa d'un canvi encara desconegut denominat [[bariogénesis]], els [[quark]]s i els [[gluó|gluons]] es combinaren en [[barió|barions]] com ara el [[protó]] i el [[neutró]], produint d'alguna manera la [[asimetria]] observada actualment entre la [[matèria]] i la [[antimatèria]]. Les temperatures encara més baixes van conduir a nous canvis de fase, que trencaren la [[simetria]], aixina que els donaren la seua forma actual a les [[forces fonamentals|forces fonamentals de la física]] i a les [[partícules elementals]]. Més tart, protons i neutrons es van combinar per a formar els [[núcleus]] de [[deuteri]] i de [[heli]], en un procés denominat [[nucleosíntesis primordial]]. Al gelar-se l'univers, la matèria gradualment va deixar de moure's de forma relativista i la seua densitat d'energia va començar a dominar gravitacionalment sobre la [[radiació]]. Passats 300.000 anys, els [[electró|electrons]] i els núcleus es combinaren per a formar els [[àtom]]s (majoritàriament d'[[hidrogen]]). Per això, la radiació es desacoplà dels àtoms i continuà per l'espai pràcticament sense obstàculs. Esta és la [[radiació de fondo de microones]].
    
Al passar el temps, algunes regions llaugerament més denses de la matèria casi uniformement distribuïda van créixer gravitacionalment, fent-se més denses, formant núvols, estreles, galàxies i el restant de les estructures astronòmiques que actualment s'observen. Els detalls d'este procés depenen de la cantitat i tipos de matèria que hi ha en l'univers. Els tres tipos possibles es denominen [[matèria fosca gelada]], [[matèria fosca calenta]] i [[matèria bariónica]]. Les millors mides disponibles (provinents del WMAP) mostren que la forma més comú de matèria en l'univers és la [[matèria fosca gelada]]. Els atres dos tipos de matèria només representarien el 20 per cent de la matèria de l'univers.
 
Al passar el temps, algunes regions llaugerament més denses de la matèria casi uniformement distribuïda van créixer gravitacionalment, fent-se més denses, formant núvols, estreles, galàxies i el restant de les estructures astronòmiques que actualment s'observen. Els detalls d'este procés depenen de la cantitat i tipos de matèria que hi ha en l'univers. Els tres tipos possibles es denominen [[matèria fosca gelada]], [[matèria fosca calenta]] i [[matèria bariónica]]. Les millors mides disponibles (provinents del WMAP) mostren que la forma més comú de matèria en l'univers és la [[matèria fosca gelada]]. Els atres dos tipos de matèria només representarien el 20 per cent de la matèria de l'univers.
Llínea 69: Llínea 69:  
=== Expansió expressada en la llei de Hubble ===
 
=== Expansió expressada en la llei de Hubble ===
   −
De l'observació de galàxies i [[quàsar]]s lluntans es desprén l'idea que estos objectes experimenten un [[corriment al roig|corriment cap al roig]], lo qual vol dir que la [[llum]] que emeten s'ha desplaçat proporcionalment cap a llongituts d'ona més llargues. Açò es comprova prenent l'[[Espectre de freqüències|espectre]] dels objectes i comparant, després, el patró [[espectroscòpia|espectroscòpic]] de les [[llínea d'emissió|llínees d'emissió]] o [[llínea d'absorció|absorció]] corresponents a àtoms dels [[element]]s que interactuen en la [[radiació]]. En este anàlisis es pot apreciar cert corriment cap al roig, lo qual s'explica per una velocitat recessional corresponent a l'[[efecte Doppler]] en la radiació. Al representar estes velocitats recessionals enfront de les distàncies respecte als objectes, s'observa que guarden una [[relació llineal]], coneguda com [[Llei de Hubble]]:
+
De l'observació de galàxies i [[quàsar]]s lluntans es desprén l'idea que estos objectes experimenten un [[corriment al roig|corriment cap al roig]], lo qual vol dir que la [[llum]] que emeten s'ha desplaçat proporcionalment cap a llongituts d'ona més llargues. Açò es comprova prenent l'[[Espectre de freqüències|espectre]] dels objectes i comparant, despuix, el patró [[espectroscòpia|espectroscòpic]] de les [[llínea d'emissió|llínees d'emissió]] o [[llínea d'absorció|absorció]] corresponents a àtoms dels [[element]]s que interactuen en la [[radiació]]. En este anàlisis es pot apreciar cert corriment cap al roig, lo qual s'explica per una velocitat recessional corresponent a l'[[efecte Doppler]] en la radiació. Al representar estes velocitats recessionals enfront de les distàncies respecte als objectes, s'observa que guarden una [[relació llineal]], coneguda com [[Llei de Hubble]]:
    
:<math>v=H_0 \cdot D \,</math>
 
:<math>v=H_0 \cdot D \,</math>
Llínea 97: Llínea 97:  
=== Evolució i distribució galàctica ===
 
=== Evolució i distribució galàctica ===
   −
Les observacions detallades de la [[seqüència de Hubble|morfologia]] i [[estructura a gran escala del cosmos|estructura]] de les galàxies i quàsars proporcionen una forta evidència del Big Bang. La combinació de les observacions en la teoria sugerix que els primers quàsars i galàxies es van formar fa en torn als mil millons d'anys després del Big Bang, i des d'eixe moment s'han estat formant estructures més grans, com els [[cúmul de galàxies|cúmuls de galàxies]] i els [[supercúmul]]s. Les poblacions d'estreles han anat envellint i evolucionant, de manera que les galàxies lluntanes (que s'observen tal com eren en el principi de l'univers) són molt diferents de les galàxies pròximes (que s'observen en un estat més recent). D'atra banda, les galàxies formades fa relativament poc són molt diferents de les galàxies que es formaren a distàncies semblants pero poc després del Big Bang. Estes observacions són arguments sòlits en contra de la teoria de l'estat estacionari. Les observacions de la [[formació estelar]], la distribució de quàsars i galàxies, i les estructures més grans concorden en les simulacions obtingudes sobre la formació de l'estructura en l'univers a partir del Big Bang, i estan ajudant a completar detalls de la teoria.
+
Les observacions detallades de la [[seqüència de Hubble|morfologia]] i [[estructura a gran escala del cosmos|estructura]] de les galàxies i quàsars proporcionen una forta evidència del Big Bang. La combinació de les observacions en la teoria sugerix que els primers quàsars i galàxies es van formar fa en torn als mil millons d'anys despuix del Big Bang, i des d'eixe moment s'han estat formant estructures més grans, com els [[cúmul de galàxies|cúmuls de galàxies]] i els [[supercúmul]]s. Les poblacions d'estreles han anat envellint i evolucionant, de manera que les galàxies lluntanes (que s'observen tal com eren en el principi de l'univers) són molt diferents de les galàxies pròximes (que s'observen en un estat més recent). D'atra banda, les galàxies formades fa relativament poc són molt diferents de les galàxies que es formaren a distàncies semblants pero poc despuix del Big Bang. Estes observacions són arguments sòlits en contra de la teoria de l'estat estacionari. Les observacions de la [[formació estelar]], la distribució de quàsars i galàxies, i les estructures més grans concorden en les simulacions obtingudes sobre la formació de l'estructura en l'univers a partir del Big Bang, i estan ajudant a completar detalls de la teoria.
    
== Problemes comuns ==
 
== Problemes comuns ==
Llínea 121: Llínea 121:  
El problema de l'horisó, també cridat [[problema de la causalitat]], resulta del fet que l'informació no pot viajar més ràpit que la llum, de manera que dos regions en l'espai separades per una distància major que la velocitat de la llum multiplicada per l'edat de l'univers no poden estar [[causalitat|causalment]] conectades. En este sentit, l'isotropia observada de la radiació de fondo de microones (CMB) resulta problemàtica, pel fet que la grandària de l'[[horisó de partícules]] en eixe temps correspon a un grandària de prop de dos graus en el cel. Si l'univers haguera tingut la mateixa història d'expansió des de l'época de Planck, no hi hauria mecanisme que poguera fer que estes regions tingueren la mateixa temperatura.
 
El problema de l'horisó, també cridat [[problema de la causalitat]], resulta del fet que l'informació no pot viajar més ràpit que la llum, de manera que dos regions en l'espai separades per una distància major que la velocitat de la llum multiplicada per l'edat de l'univers no poden estar [[causalitat|causalment]] conectades. En este sentit, l'isotropia observada de la radiació de fondo de microones (CMB) resulta problemàtica, pel fet que la grandària de l'[[horisó de partícules]] en eixe temps correspon a un grandària de prop de dos graus en el cel. Si l'univers haguera tingut la mateixa història d'expansió des de l'época de Planck, no hi hauria mecanisme que poguera fer que estes regions tingueren la mateixa temperatura.
   −
Esta aparent inconsistència es resol en la [[Inflació còsmica|teoria inflacionista]], segons la qual un camp d'energia escalar isòtrop domina l'univers al transcórrer un temps de Planck després de l'época de Planck. Durant l'inflació, l'univers patix una expansió exponencial, i regions que s'afecten mútuament s'expandixen més allà dels seus respectius horisons El [[principi d'incertea de Heisenberg]] prediu que durant la fase inflacionista hi haurà [[fluctuació primordial|fluctuacions primordials]], que se simplificaran fins a l'escala còsmica. Estes [[fluctuació|fluctuacions]] servixen de llavor per a tota l'estructura actual de l'univers. Al passar la inflació, l'univers s'expandix seguint la llei de Hubble, i les regions que estaven massa llunt per a afectar-se mútuament tornen a l'horisó Açò explica l'isotropia observada de la CMB. L'inflació prediu que les fluctuacions primordials són casi invariants segons l'escala i que tenen una [[distribució normal]] o gaussiana, lo qual ha sigut confirmat en precisió per mides de la CMB.
+
Esta aparent inconsistència es resol en la [[Inflació còsmica|teoria inflacionista]], segons la qual un camp d'energia escalar isòtrop domina l'univers al transcórrer un temps de Planck despuix de l'época de Planck. Durant l'inflació, l'univers patix una expansió exponencial, i regions que s'afecten mútuament s'expandixen més allà dels seus respectius horisons El [[principi d'incertea de Heisenberg]] prediu que durant la fase inflacionista hi haurà [[fluctuació primordial|fluctuacions primordials]], que se simplificaran fins a l'escala còsmica. Estes [[fluctuació|fluctuacions]] servixen de llavor per a tota l'estructura actual de l'univers. Al passar la inflació, l'univers s'expandix seguint la llei de Hubble, i les regions que estaven massa llunt per a afectar-se mútuament tornen a l'horisó Açò explica l'isotropia observada de la CMB. L'inflació prediu que les fluctuacions primordials són casi invariants segons l'escala i que tenen una [[distribució normal]] o gaussiana, lo qual ha sigut confirmat en precisió per mides de la CMB.
    
En 2003 va aparéixer una atra teoria per a resoldre este problema, [[Velocitat de la llum variable|la velocitat variant de la llum]] de [[Joao Magueijo]], que encara que a la llarga contradiu la relativitat d'Éinstein gasta la seua equació incloent la constant cosmològica per a resoldre el problema d'una forma molt eficaç que també ajuda a solucionar el problema de la planitut.
 
En 2003 va aparéixer una atra teoria per a resoldre este problema, [[Velocitat de la llum variable|la velocitat variant de la llum]] de [[Joao Magueijo]], que encara que a la llarga contradiu la relativitat d'Éinstein gasta la seua equació incloent la constant cosmològica per a resoldre el problema d'una forma molt eficaç que també ajuda a solucionar el problema de la planitut.
Llínea 154: Llínea 154:  
=== Quarks ===
 
=== Quarks ===
   −
Se sap que en el moment després del Big Bang les partícules elementals van aparéixer, els quarks dalt en els protons i els quarks baix en els neutrons, per ser de la mateixa càrrega elèctrica, no es  pogueren unir per l'interacció electromagnètica, és inútil recórrer a l'interacció nuclear forta, puix esta només té un abast de la grandària màxima del núcleu i ademés perque l'interacció electromagnètica té un abast jagantí, també l'univers es va engrandir en un segon assoles cent octillons de vegades, en este brevíssim espai de temps l'interacció nuclear forta no podria unir la casi totalitat (si no és la totalitat) dels quarks.
+
Se sap que en el moment despuix del Big Bang les partícules elementals van aparéixer, els quarks dalt en els protons i els quarks baix en els neutrons, per ser de la mateixa càrrega elèctrica, no es  pogueren unir per l'interacció electromagnètica, és inútil recórrer a l'interacció nuclear forta, puix esta només té un abast de la grandària màxima del núcleu i ademés perque l'interacció electromagnètica té un abast jagantí, també l'univers es va engrandir en un segon assoles cent octillons de vegades, en este brevíssim espai de temps l'interacció nuclear forta no podria unir la casi totalitat (si no és la totalitat) dels quarks.
 
Encara no ha sigut resolt este problema.
 
Encara no ha sigut resolt este problema.
    
== El futur d'acort en la teoria del Big Bang ==
 
== El futur d'acort en la teoria del Big Bang ==
   −
Abans de les observacions de l'energia fosca, els cosmòlecs consideraren dos possibles escenaris per al futur de l'univers. Si la densitat de massa de l'univers es troba sobre la densitat crítica, llavors l'univers conseguiria un grandària màxima i després començaria a colapsar-se. Este es faria més dens i més calent novament, acabant en un estat semblant a l'estat en el qual va escomençar en un procés cridat Big Crunch. D'atra banda, si la densitat en l'univers és igual o menor a la densitat crítica, l'expansió disminuiria la seua velocitat, pero mai es detindria. La formació d'estreles cessaria mentres l'univers en creiximent es faria menys dens cada vegada. La mija de la temperatura de l'univers podria acostar-se asintòticament al [[zero absolut]] (0 [[Kelvin|K]] o -273,15ºC). Els forats negres s'evaporarien per efecte de la [[radiació d'Hawking]]. L'[[entropia]] de l'univers s'incrementaria fins al punt en que cap forma d'energia podria ser extreta d'ell, un escenari conegut com [[mort tèrmica]]. Més encara, si n'hi ha  descomposició del protó, procés pel qual un protó decauria a partícules manco massives emetent radiació en el procés, llavors tot l'hidrogen, la forma predominant de la matèria bariònica en l'univers actual, desapareixeria a molt llarc determini, deixant només [[radiació]].
+
Abans de les observacions de l'energia fosca, els cosmòlecs consideraren dos possibles escenaris per al futur de l'univers. Si la densitat de massa de l'univers es troba sobre la densitat crítica, llavors l'univers conseguiria un grandària màxima i despuix començaria a colapsar-se. Este es faria més dens i més calent novament, acabant en un estat semblant a l'estat en el qual va escomençar en un procés cridat Big Crunch. D'atra banda, si la densitat en l'univers és igual o menor a la densitat crítica, l'expansió disminuiria la seua velocitat, pero mai es detindria. La formació d'estreles cessaria mentres l'univers en creiximent es faria menys dens cada vegada. La mija de la temperatura de l'univers podria acostar-se asintòticament al [[zero absolut]] (0 [[Kelvin|K]] o -273,15ºC). Els forats negres s'evaporarien per efecte de la [[radiació d'Hawking]]. L'[[entropia]] de l'univers s'incrementaria fins al punt en que cap forma d'energia podria ser extreta d'ell, un escenari conegut com [[mort tèrmica]]. Més encara, si n'hi ha  descomposició del protó, procés pel qual un protó decauria a partícules manco massives emetent radiació en el procés, llavors tot l'hidrogen, la forma predominant de la matèria bariònica en l'univers actual, desapareixeria a molt llarc determini, deixant només [[radiació]].
    
Les observacions modernes de l'expansió accelerada impliquen que cada vegada una major part de l'[[univers visible]] en l'actualitat quedarà més allà del nostre [[horisó de successos]] i fora de contacte. Es desconeix quin seria el resultat d'este acontenyiment.  El [[model Lambda-CMD]] de l'univers conté energia fosca en la forma d'una [[constant cosmològica]] (d'alguna manera semblant a la que havia inclòs Éinstein en la seua primera versió de les equacions de camp). Esta teoria sugerix que només els sistemes mantinguts gravitacionalment, com les galàxies, es mantindrien junts, i ells també estarien subjectes a la [[mort tèrmica]] a medida que l'univers es gelara i expandira. Atres explicacions de l'energia fosca cridades [[teories de l'energia fantasma]] sugerixen que els cúmuls de galàxies i finalment les galàxies mateixes s'esgarraran per l'eterna expansió de l'univers, en el cridat [[Big Rip]].
 
Les observacions modernes de l'expansió accelerada impliquen que cada vegada una major part de l'[[univers visible]] en l'actualitat quedarà més allà del nostre [[horisó de successos]] i fora de contacte. Es desconeix quin seria el resultat d'este acontenyiment.  El [[model Lambda-CMD]] de l'univers conté energia fosca en la forma d'una [[constant cosmològica]] (d'alguna manera semblant a la que havia inclòs Éinstein en la seua primera versió de les equacions de camp). Esta teoria sugerix que només els sistemes mantinguts gravitacionalment, com les galàxies, es mantindrien junts, i ells també estarien subjectes a la [[mort tèrmica]] a medida que l'univers es gelara i expandira. Atres explicacions de l'energia fosca cridades [[teories de l'energia fantasma]] sugerixen que els cúmuls de galàxies i finalment les galàxies mateixes s'esgarraran per l'eterna expansió de l'univers, en el cridat [[Big Rip]].

Menú de navegació