Canvis

No hi ha canvi en el tamany ,  20:20 3 jun 2022
Text reemplaça - ' entero' a ' sancer'
Llínea 1: Llínea 1: −
En [[matemàtica]], i particularment en la [[teoria de números]], la '''teorema fonamental de l'Aritmètica''' o '''teorema de factorisació única''' afirma que tot [[número entero|sancer]] [[número positiu|positiu]] major que 1 és un [[número primo| número primo]] o be un únic [[producte (multiplicació)|producte]] de [[números primos|número primo]]. Per eixemple,
+
En [[matemàtica]], i particularment en la [[teoria de números]], la '''teorema fonamental de l'Aritmètica''' o '''teorema de factorisació única''' afirma que tot [[número sancer|sancer]] [[número positiu|positiu]] major que 1 és un [[número primo| número primo]] o be un únic [[producte (multiplicació)|producte]] de [[números primos|número primo]]. Per eixemple,
    
: <math> 6936 = 2^3 \cdot 3 \cdot 17^2 \, </math>
 
: <math> 6936 = 2^3 \cdot 3 \cdot 17^2 \, </math>
Llínea 9: Llínea 9:     
== Aplicacions ==
 
== Aplicacions ==
=== Representació canònica d'un entero positiu ===
+
=== Representació canònica d'un sancer positiu ===
    
Tot sancer positiu ''n'' > 1 pot ser representat '''exactament d'una única manera''' com un producte de potències de número primo:
 
Tot sancer positiu ''n'' > 1 pot ser representat '''exactament d'una única manera''' com un producte de potències de número primo: