Diferència entre les revisions de "Teorema dels sens"

De L'Enciclopèdia, la wikipedia en valencià
Anar a la navegació Anar a la busca
Llínea 14: Llínea 14:
 
on ''R'' és el radi de la [[circumferència]]. Rebujant ''2R'' obtenim:
 
on ''R'' és el radi de la [[circumferència]]. Rebujant ''2R'' obtenim:
 
{{Equació|<math>\frac{a}{sen\,A} = 2R</math>|3=left}}.  
 
{{Equació|<math>\frac{a}{sen\,A} = 2R</math>|3=left}}.  
 +
 +
Repetint el procediment en un diàmetro que passe per ''A'' i un atre que passe per ''C'', s'aplega a que les tres fraccions tenen el mateix valor ''2R'' i per tant són iguals.
 +
 +
La conclusió que s'obté sol cridar-se teorema dels sens generalisat i establix:
 +
{{teorema|Per a un triàngul ''ABC'' on ''a, b, c'' són els costats oposts als ànguls ''A, B, C''  respectivament, si ''R'' denota el radi de la [[circumferència]] circumscrita, llavors:
 +
{{Equació|<math>frac{a}{sen,A} =frac{b}{sen,B} =frac{c}{sen,C}=2R. </math>|3=left}}}}
 +
  
 
== Vore també ==
 
== Vore també ==

Revisió de 13:54 29 ago 2016

Teorema del sen.

En trigonometria, la teorema dels sens[1] o també conegut com a llei dels sens [2] és una relació de proporcionalitat entre les llongituts dels costats d'un triàngul i els sens dels seus respectius ànguls oposts. Usualment es presenta de la següent forma: Plantilla:T.

Demostració

A pesar de ser dels teoremas trigonomètrics més usats i de tindre una demostració particularment simple, és poc comú que es present o discutixca la mateixa en cursos de trigonometria, de modo que és poc coneguda.

La teorema dels sens establix que a/sen(A) és constant.

Donat el triàngul ABC, denotem per O el seu circumcentre i dibuixem el seu circumferència circumscrita. Prolongant el segment BO fins a tallar la circumferència, s'obté un diàmetro BP.

Ara, el triàngul PCB és recte, ya que BP és un diàmetro, i ademés els ànguls A i P són congruents, perque abdós són ànguls inscrits que òbrin el segment BC (Vore definició de arc capaç). Per definició de la funció trigonomètrica sen, es té

{{{1}}}

on R és el radi de la circumferència. Rebujant 2R obtenim:

{{{1}}}

.

Repetint el procediment en un diàmetro que passe per A i un atre que passe per C, s'aplega a que les tres fraccions tenen el mateix valor 2R i per tant són iguals.

La conclusió que s'obté sol cridar-se teorema dels sens generalisat i establix:

Per a un triàngul ABC on a, b, c són els costats oposts als ànguls A, B, C respectivament, si R denota el radi de la circumferència circumscrita, llavors:

{{{1}}}


Vore també

  1. Pogorélov. Geometria elemental. Editorial Mir, Moscou(1977)
  2. Larson. Trigonometria. ISBN 978-607-481-7-34 (2011)