Edició de «Equació de segon grau»

Anar a la navegació Anar a la busca

Advertencia: No has iniciat sessió. La teua direcció IP serà visible públicament si realises qualsevol edició. Si inicies sessió o crees un conte, les teues edicions s'atribuiran al teu nom d'usuari, junt en atres beneficis.

Pot desfer-se la modificació. Per favor, revisa la comparació més avall per a assegurar-te que es lo que vols fer; llavors deixa els canvis per a la finalisació de la desfeta de l'edició.

Revisió actual El teu text
Llínea 1: Llínea 1:
 
[[Archiu:Ecuación cuadrática.svg|thumb|250px|Els punts comuns d'una paràbola en l'eix X (recta y = 0), les [[raïl d'una equació|raïls]], són les solucions reals de l'equació quadràtica.]]
 
[[Archiu:Ecuación cuadrática.svg|thumb|250px|Els punts comuns d'una paràbola en l'eix X (recta y = 0), les [[raïl d'una equació|raïls]], són les solucions reals de l'equació quadràtica.]]
  
Una '''equació de segon grau''' <ref>{{springer|título=Ecuación cuadrática|id=Quadratic_equation&oldid=14167}}</ref><ref>{{MathWorld|QuadraticEquation|Ecuación cuadrática}}</ref> o '''equació quadràtica d'una variable''' és una [[equació]] que té la forma d'una suma algebraica de térmens de grau màxim dos, és dir, una equació quadràtica pot ser representada per un [[polinomi]] de [[quadrat (àlgebra)|segon grau]] o polinomi quadràtic. L'expressió canònica general d'una equació quadràtica d'una variable és:
+
Una '''equació de segon grau''' <ref>{{springer|título=Ecuación cuadrática|id=Quadratic_equation&oldid=14167}}</ref><ref>{{MathWorld|QuadraticEquation|Ecuación cuadrática}}</ref> o '''equació quadràtica d'una variable''' és una [[equació]] que té la forma d'una suma algebraica de térmens el grau màxim dels quals és dos, és dir, una equació quadràtica pot ser representada per un [[polinomi]] de [[quadrat (àlgebra)|segon grau]] o polinomi quadràtic. L'expressió canònica general d'una equació quadràtica d'una variable és:
 +
 
 +
{{equació|<math>ax^2 + bx + c  = 0,\;\;\mbox{donde}\;a\neq 0 </math>}}
 +
 
 +
on ''x'' és la [[Variable (matemàtiques)|variable]], i ''a'', ''b'' i ''c'' constants; ''a'' és el [[Coeficient (matemàtiques)|coeficient]] quadràtic (distint de 0), ''b'' el coeficient llineal i ''c'' és el terme independent. Este polinomi es pot interpretar per mig de la [[Gràfica d'una funció|gràfica]] d'una [[funció quadràtica]], és dir, per una [[Paràbola (matemàtica)|paràbola]]. Esta representació gràfica és útil, perque les interseccions o punt tangencial d'esta gràfica, en el cas d'existir, en el [[eix de les abscisses|eix X]] coincidixen en les solucions reals de l'equació.
 +
 
 +
== Historia ==
 +
Les equacions de [[quadrat (àlgebra)|segon grau]] i el seu [[resolució d'equacions|solució de les equacions]] es coneixen des de l'antiguetat. En [[Babilònia]] es varen conéixer [[algoritme]]s per a resoldre-la. Va ser trobat independentment en atres llocs del món. En [[Grècia]], el matemàtic [[Diofanto d'Aleixandria]] va aportar un procediment per a resoldre este tipo d'equacions (encara que el seu método només proporcionava una de les solucions, fins i tot en el cas de que les dos solucions siguen positives). La primera solució completa la va desenrollar el matemàtic [[Al-Juarismi]] (o Al-*Khwarizmi segons atres grafies), en el sigle IX en el seu treball ''[[Compendi de càlcul per reintegrament i comparació]]'', tancant en això un problema que s'havia perseguit durant sigles. Basant-se en el treball d'Al-Juarismi, el matemàtic judeoespañol [[Abraham bar Hiyya]], en el seu ''[[Liber embadorum]]'', discutix la solució d'estes equacions.{{cr}}
 +
Cal esperar a [[Évariste Galois]] per a conseguir resoldre en general les equacions polinòmiques, o saber quàn són irresolubles per radicals, que ve a ser una generalisació dels métodos de resolució de les equacions de segon grau.
  
{{equació|<math>ax^2 + bx + c  = 0,\;\;\mbox{a on }\;a\neq 0 </math>}}
 
  
a on ''x'' és la [[Variable (matemàtiques)|variable]], i ''a'', ''b'' i ''c'' constants; ''a'' és el [[Coeficient (matemàtiques)|coeficient]] quadràtic (distint de 0), ''b'' el coeficient llineal i ''c'' és el terme independent. Este polinomi es pot interpretar per mig de la [[Gràfica d'una funció|gràfica]] d'una [[funció quadràtica]], és dir, per una [[Paràbola (matemàtica)|paràbola]]. Esta representació gràfica és útil perque les interseccions o punt tangencial d'esta gràfica, en el cas d'existir, en el [[eix de les abscisses|eix X]] coincidixen en les solucions reals de l'equació.
 
  
== Història ==
 
Les equacions de [[quadrat (àlgebra)|segon grau]] i la [[resolució d'equacions|solució de les equacions]] es coneixen des de l'antiguetat. En [[Babilònia]] es varen conéixer [[algoritme]]s per a resoldre-les. Varen ser trobades independentment en atres llocs del món. En [[Grècia]], el matemàtic [[Diofanto d'Aleixandria]] va aportar un procediment per a resoldre este tipo d'equacions (encara que el seu método a soles proporcionava una de les solucions, inclús en el cas de que les dos solucions foren positives). La primera solució completa la va desenrollar el matemàtic [[Al-Juarismi]] (o Al-*Khwarizmi segons atres grafies), en el sigle IX en el seu treball ''[[Compendi de càlcul per reintegrament i comparació]]'', tancant en això un problema que s'havia perseguit durant sigles. Basant-se en el treball d'Al-Juarismi, el matemàtic judeoespañol [[Abraham bar Hiyya]], en el seu ''[[Liber embadorum]]'', discutix la solució d'estes equacions. S'ha d'esperar a [[Évariste Galois]] per a conseguir resoldre en general les equacions polinòmiques, o saber quan són irresolubles per radicals, que ve a ser una generalisació dels métodos de resolució de les equacions de segon grau.
 
  
  
Llínea 14: Llínea 18:
  
  
[[Categoria:Matemàtiques]]
 
[[Categoria:Àlgebra]]
 
 
[[Categoria:Àlgebra elemental]]
 
[[Categoria:Àlgebra elemental]]
 
[[Categoria:Equacions algebraiques|Equació de 2º grau]]
 
[[Categoria:Equacions algebraiques|Equació de 2º grau]]
  
 
{{Traduït de|es|Ecuación de segundo grado}}
 
{{Traduït de|es|Ecuación de segundo grado}}

Per a editar esta pàgina, per favor respon a la pregunta que apareix més avall (més informació):

Cancelar Ajuda d'edició (s'obri en una finestra nova)


Advertència sobre drets d'autor

Totes les contribucions a Proyecte se publiquen baix la Llicència de documentació lliure GNU. Al contribuir, acceptes que atres persones distribuïxquen i modifiquen lliurement les teues aportacions. Si això no és lo que desiges, no poses les teues contribucions ací.

Ademés, al publicar el teu treball nos assegures que estàs llegalment autorisat a dispondre d'eixe text, ya siga perque eres el titular dels drets d'autor o per haver-lo obtingut d'una font baix una llicència compatible o en el domini públic. Recorda que l'immensa majoria del contingut disponible en internet no complix estos requisits; llig Proyecte:Drets d'autor per a més detalls.

¡No utilises sense permís escrits en drets d'autor!