Un alvanç important en l'algebra fon l'introduccio, en el sigle XVI, de símbols per a les incognites i per a les operacions i potencies algebraiques. Degut a este alvanç, el Llibre III de la Geometria (1637), escrit pel matematic i filosof francés [[René Descartes]] se sembla prou a un text modern d'algebra. No obstant, la contribució més important de Descarts a les matematiques fon el descobriment de la geometria analitica, que reduix la resolucio de problemes geometriques a la resolucio de problemes algebraiques. El seu llibre de geometria conte també els fonaments d'un curs de teoria d'equacions, incloent lo que el propi Descarts cridà la regla dels signes per a contar el numero d'arrels verdaderes (positives) i falses (negatives) d'una equacio. Durant el sigle XVIII se continuà treballant en la teoria d'equacions i en [[1799]] el matematic alema [[Carl Friedrich Gauss]] publicà la demostracio de que tota equacio polinòmica te al menys una arrel en el pla complex. | Un alvanç important en l'algebra fon l'introduccio, en el sigle XVI, de símbols per a les incognites i per a les operacions i potencies algebraiques. Degut a este alvanç, el Llibre III de la Geometria (1637), escrit pel matematic i filosof francés [[René Descartes]] se sembla prou a un text modern d'algebra. No obstant, la contribució més important de Descarts a les matematiques fon el descobriment de la geometria analitica, que reduix la resolucio de problemes geometriques a la resolucio de problemes algebraiques. El seu llibre de geometria conte també els fonaments d'un curs de teoria d'equacions, incloent lo que el propi Descarts cridà la regla dels signes per a contar el numero d'arrels verdaderes (positives) i falses (negatives) d'una equacio. Durant el sigle XVIII se continuà treballant en la teoria d'equacions i en [[1799]] el matematic alema [[Carl Friedrich Gauss]] publicà la demostracio de que tota equacio polinòmica te al menys una arrel en el pla complex. |