Canvis

Anar a la navegació Anar a la busca
8 bytes eliminats ,  06:40 8 maig 2018
m
Corregits erros d'ortografia.
Llínea 4: Llínea 4:     
== Història ==
 
== Història ==
És probable que l'home haja desenrollat conceptes matemàtics ans que l'escritura. El primer objecte reconegut que certifica el desenroll de les matemàtiques com a coneiximent transmitit per les primeres civilisacions està vinculat ad aplicacions especifiques: el comerci, la gestió de las collites, la mida de les superfícies, la predicció dels acontenyiments astronomics, i a voltes l' eixecució de rituals religiosos.
+
És provable que l'home haja desenrollat conceptes matemàtics ans que l'escritura. El primer objecte reconegut que certifica el desenroll de les matemàtiques com a coneiximent transmitit per les primeres civilisacions està vinculat a aplicacions especifiques: el comerci, la gestió de les collites, la mida de les superfícies, la predicció dels acontenyiments astronòmics, i a voltes l' eixecució de rituals religiosos.
   −
Inicialment, les matemàtiques es centraven en l'extracció de les arraïls quadrades, de les arraïls cúbiques, la resolució d'equacions polinomials, la [[trigonometria]], el càlcul fraccionari, l'[[aritmetica]] de les totalitats naturals. Estes innovacions, basades en l'estudi d'elements naturals i tangibles, són producte de les arcaïques civilisacions acàdia, babilònia, egipcia, chinenca i les de la vall de l'Indo.  
+
Inicialment, les matemàtiques es centraven en l'extracció de les raïls quadrades, de les raïls cúbiques, la resolució d'equacions polinomials, la [[trigonometria]], el càlcul fraccionari, l'[[aritmetica]] de les totalitats naturals. Estes innovacions, basades en l'estudi d'elements naturals i tangibles, són producte de les arcaïques civilisacions acàdia, babilònia, egipcia, chinenca i les de la vall de l'Indo.  
   −
És en els grecs clàssics, entre els anys 600 i 300 AC, quan s'escomençaren a estudiar els aspectes teòrics de les matemàtiques ''per se''. Influïdes sobre tot pels treballs anteriors i les especulacions filosofiques, buscaven encara mes abstracció. D'esta forma precisaren els conceptes de demostració i definició axiomàtica. Ademés, crearen dos branques: l'[[aritmètica]] i la [[geometria]]. La civilisació islàmica permeté la conservació de l'herència grega i la síntesis d'esta en els descobriments chinencs i indis, en quant a representació dels numeros. Ad ella es deu l'invenció del zero, de l'[[àlgebra]], i la transmissió del sistema de numeració actual (en realitat d'orige indi o chinenc) a [[Europa]].   
+
És en els grecs clàssics, entre els anys 600 i 300 AC, quan s'escomençaren a estudiar els aspectes teòrics de les matemàtiques ''per se''. Influïdes sobre tot pels treballs anteriors i les especulacions filosòfiques, buscaven encara més abstracció. D'esta forma precisaren els conceptes de demostració i definició axiomàtica. Ademés, crearen dos branques: l'[[aritmètica]] i la [[geometria]]. La civilisació islàmica permeté la conservació de l'herència grega i la síntesis d'esta en els descobriments chinencs i indis, en quant a representació dels numeros. Ad ella es deu l'invenció del zero, de l'[[àlgebra]], i la transmissió del sistema de numeració actual (en realitat d'orige indi o chinenc) a [[Europa]].   
    
== Branques d'estudi de les matemàtiques ==
 
== Branques d'estudi de les matemàtiques ==
Llínea 15: Llínea 15:     
* Els diferents tipos de cantitats (números) han jugat un paper obvi i important en tots els aspectes quantitatius i qualitatius del desenroll de la cultura, la ciència i la tecnologia.
 
* Els diferents tipos de cantitats (números) han jugat un paper obvi i important en tots els aspectes quantitatius i qualitatius del desenroll de la cultura, la ciència i la tecnologia.
* L'estudi de l'estructura comença en considerar les diferents propietats dels [[número]]s, inicialment els [[números natural]] i els [[números enters]]. Les regles que dirigixen les operacions aritmètiques s'estudien en el [[àlgebra elemental]], i les propietats més profundes dels números enters s'estudien en la [[teoria de números]]. Despuix, l'organisació de coneiximents elementals va produir els sistemes axiomàtics (teories), permetent el descobriment de conceptes estructurals que en l'actualitat dominen esta ciència (i.g. estructures categòriques). L'investigació de métodos per a resoldre equacions porta al camp del [[àlgebra abstracta]]. L'important concepte de [[vector (matemàtica)|vector]], generalisat a [[espai vectorial]], és estudiat en el [[àlgebra llineal]] i pertany a les dos branques de l'estructura i l'espai.
+
* L'estudi de l'estructura comença en considerar les diferents propietats dels [[número]]s, inicialment els [[números natural]] i els [[números enters]]. Les regles que dirigixen les operacions aritmètiques s'estudien en l'[[àlgebra elemental]], i les propietats més profundes dels números enters s'estudien en la [[teoria de números]]. Despuix, l'organisació de coneiximents elementals va produir els sistemes axiomàtics (teories), permetent el descobriment de conceptes estructurals que en l'actualitat dominen esta ciència (i.g. estructures categòriques). L'investigació de métodos per a resoldre equacions porta al camp del [[àlgebra abstracta]]. L'important concepte de [[vector (matemàtica)|vector]], generalisat a [[espai vectorial]], és estudiat en l'[[àlgebra llineal]] i pertany a les dos branques de l'estructura i l'espai.
 
* L'estudi de l'espai origina la [[geometria]], primer la [[geometria euclídea]] i després la [[trigonometria]]. En la seua faceta alvançada el sorgiment de la topologia dona la necessària i correcta manera de pensar sobre les nocions de rodalia i continuïtat de les nostres concepcions espacials.
 
* L'estudi de l'espai origina la [[geometria]], primer la [[geometria euclídea]] i després la [[trigonometria]]. En la seua faceta alvançada el sorgiment de la topologia dona la necessària i correcta manera de pensar sobre les nocions de rodalia i continuïtat de les nostres concepcions espacials.
* La comprensió i descripció del canvi en variables mesurables és el tema central de les [[ciències naturals]] i del [[Càlcul infinitesimal|càlcul]]. Per a resoldre problemes que es dirigixen en forma natural a relacions entre una cantitat i la seua taxa de canvi, s'estudien les [[equació diferencial|equacions diferencials]] i de les seues solucions. Els números usats per a representar les cantitats contínues són els [[números reals]]. Per a estudiar els processos de canvi s'utilisa el concepte de [[funció matemàtica]]. Els conceptes de [[derivada]] i [[integral]], introduïts per [[Isaac Newton|Newton]] i [[Leibniz]], representen un paper clau en este estudi, i són objectes del Càlcul diferencial i integral i, sobre el rigor, s'ocupa el [[Anàlisis matemàtic]]. És convenient per a molts fins introduir funció, derivació, integració en el conjunt C dels número complexos, aixina sorgixen el càlcul de variable complexa i el [[anàlisis complex]]. El [[anàlisis funcional]] consistix en estudiar els espais vectorials de dimensió infinita, problemes que la seua incògnita és una funció.
+
* La comprensió i descripció del canvi en variables mesurables és el tema central de les [[ciències naturals]] i del [[Càlcul infinitesimal|càlcul]]. Per a resoldre problemes que es dirigixen en forma natural a relacions entre una cantitat i la seua taxa de canvi, s'estudien les [[equació diferencial|equacions diferencials]] i de les seues solucions. Els números usats per a representar les cantitats contínues són els [[números reals]]. Per a estudiar els processos de canvi s'utilisa el concepte de [[funció matemàtica]]. Els conceptes de [[derivada]] i [[integral]], introduïts per [[Isaac Newton|Newton]] i [[Leibniz]], representen un paper clau en est estudi, i són objectes del Càlcul diferencial i integral i, sobre el rigor, s'ocupa l'[[Anàlisis matemàtic]]. És convenient per a molts fins introduir funció, derivació, integració en el conjunt C dels número complexos, aixina sorgixen el càlcul de variable complexa i l'[[anàlisis complex]]. L'[[anàlisis funcional]] consistix en estudiar els espais vectorials de dimensió infinita, problemes que la seua incògnita és una funció.
       
[[Categoria:Ciències naturals]]
 
[[Categoria:Ciències naturals]]
 
[[Categoria:Matemàtiques]]
 
[[Categoria:Matemàtiques]]
1492

edicions

Menú de navegació