Canvis

Anar a la navegació Anar a la busca
2 bytes afegits ,  10:01 11 set 2016
sense resum d'edició
Llínea 23: Llínea 23:     
Si <math>(X,d)</math> és un espai mètric i <math>I subset X</math>, podem restringir <math>d</math> a <math>I</math> de la següent forma:
 
Si <math>(X,d)</math> és un espai mètric i <math>I subset X</math>, podem restringir <math>d</math> a <math>I</math> de la següent forma:
<math>d': I claves I longrightarrow mathbb{R}</math> de manera que si <math>x,i in I</math> llavors <math>d'(x,i)=d(x,i)</math> (és dir, <math>d'=d|_{I claves I}</math>). L'aplicació <math>d'</math> és també una distància sobre <math>d</math>, i com compartix sobre <math>I claves I</math> els mateixos valors que <math>d</math>, es denota també de la mateixa manera, és dir, direm que <math>(I,d)</math> és subespai mètric de <math>(X,d)</math>.
+
<math>d': E \times E \longrightarrow \mathbb{R}</math> de manera que si <math>x,i in I</math> llavors <math>d'(x,i)=d(x,i)</math> (és dir, <math>d'=d|_{I claves I}</math>). L'aplicació <math>d'</math> és també una distància sobre <math>d</math>, i com compartix sobre <math>I claves I</math> els mateixos valors que <math>d</math>, es denota també de la mateixa manera, és dir, direm que <math>(I,d)</math> és subespai mètric de <math>(X,d)</math>.
     
Usuari anónim

Menú de navegació