6492 bytes afegits
, 13:34 16 abr 2014
[[Archiu:Bernard Bolzano.jpg|thumb|Bernard Bolzano|Bernard Bolzano]]
'''Bernard Placidus Johann Nepomuk Bolzano''' ([[Praga]], [[Bohèmia]] (actual [[República Checa]]), [[5 d'octubre]] de [[1781]] - ídem, [[18 de decembre]] de [[1848]]), conegut com a '''Bernard Bolzano''' va ser un [[matemàtic]], llògic, [[filòsof]] i teòlec bohemi que va escriure en alemà i que va realisar importants contribucions a les matemàtiques i a la [[Teoria del coneiximent]].
En matemàtiques, se'l coneix pel [[teorema de Bolzano]] i el [[teorema de Bolzano-Weierstrass]], que va esbossar com a lema d'un atre treball en 1817, que décades després hauria de desenrollar [[Karl Weierstrass]]. A la seua [[filosofia]], Bolzano va criticar l'idealisme de [[Georg Wilhelm Friedrich Hegel|Hegel]] i [[Immanuel Kant|Kant]] afirmant que els números, les idees, i les veritats existixen de manera independent a les persones que els pensen.
== Biografia ==
En 1796 Bolzano es va inscriure a la Facultat de [[Filosofia]] de la Universitat de [[Praga]]. A la tarde de [[1800]] va començar a estudiar [[Teologia]], a la que va dedicar els següents tres anys, durant els quals també va preparar la seua tesis doctoral en Geometria. Conseguí el [[doctorat]] en [[1804]], després d'haver redactat una tesis en qué expressava la seua opinió sobre les Matemàtiques i sobre les característiques d'una correcta demostració matemàtica. En el pròlec va escriure: "''No podria sentir-me satisfet per una demostració estrictament rigorosa, si esta no derivara dels conceptes continguts en la tesis que ha de demostrar."'' Dos anys després de ser nomenat doctor es va ordenar com a sacerdot catòlic romà.
La seua autèntica vocació era la docència, i en [[1804]] va obtindre la càtedra de Filosofia i Religió a la Universitat de Praga. Les seues ensenyances estaven impregnades per forts ideals pacifistes i per una viva exigència de justícia política. A més, Bolzano fruïa, per les seues qualitats intelectuals, d'un enorme prestigi entre els seus colegues professors i entre els estudiants. Després d'algunes pressions del govern austríac, el [[1819]] Bolzano va ser acusat d'[[heregia]] i sota arrest domiciliari se li va prohibir publicar. A pesar de la censura del govern, els seus llibres es van publicar fora de l'[[Imperi austríac]] i Bolzano va seguir escrivint i ocupant un important paper dins de la vida intelectual del seu país.
Bolzano va escriure en [[1810]] ''Beiträge zu einer begründeteren Darstellung der Mathematik. Erste Lieferung'', la primera d'una serie programada d'escrits sobre fonaments de les matemàtiques. A la segona part trobem ''Der binomische Lehrsatzl'' de 1816 i ''Rein analytischer Beweis'' (''Pura demostració matemàtica'') de [[1817]], que contenen un intent d'impostació del càlcul infinitesimal que no recorre al concepte de infinitesimal. En el pròlec del primer de tots dos declara que el seu treball és un eixemple de la nova manera de desenrollar l'[[anàlisis matemàtica]]. En el treball de 1817 Bolzano entenia que lliberava els conceptes de llímit, convergència i derivada de nocions geomètriques, substituint-les per conceptes purament aritmètics i numèrics.
Bolzano era conscient de l'existència d'un problema més profunt: era necessari refinar i enriquir el propi concepte de [[número]]. En este treball cal situar la demostració del teorema del valor intermig en la nova aproximació de Bolzano, concepte que apareix en un treball de [[Augustin Louis Cauchy]] aparegut quatre anys després.
Després de 1817, Bolzano va estar molts anys sense publicar res relacionat en les matemàtiques. No obstant això, en 1837, va publicar ''Wissenschaftslehre'', un intent d'elaborar una teoria del coneiximent i de la ciència completa. Bolzano va intentar proporcionar fonaments llògics a totes les ciències, construïdes partint d'abstraccions, d'objectes abstractes, d'atributs, de construccions de demostracions, vínculs... La major part d'estes intents reprenen estes treballs anteriors que afecten la relació objectiva entre les conseqüències llògiques i la nostra percepció purament subjectiva d'estes conseqüències. Aquí s'acosta a la filosofia de les matemàtiques. Per Bolzano, no tenim cap certea quant a les veritats, o a les supostes com a tals, de la naturalea o de les matemàtiques, i precisament el paper de les ciències, tant pures com aplicades és trobar una justificació de les veritats fonamentals, que sovint contradiuen les nostres intuïcions. Entre 1830 i 1840, Bolzano va treballar en una obra major, ''Grössenlehre'' en qué tractarà de reinterpretar tota la matemàtica sota bases llògiques. Només va arribar a publicar una part, esperant que els seus alumnes proseguixquen la seua obra i publiquen una versió completa.
El 1854, tres anys després de la seua mort, un alumne seu va publicar l'obra de Bolzano ''Paradoxien des Unendlichen'', un estudi sobre les paradoxes de l'[[infinit]]. Apareix per primera vegada el terme "conjunt", en la forma alemanya Menge. En este treball Bolzano aporta eixemples de correspondència biunívoca entre els elements d'un conjunt infinit i fins i tot d'un subconjunt. La major part dels treballs de Bolzano van permaneixer en forma de manuscrit, pel que va haver una circulació molt reduïda i una escassa influència en el desenroll de la matèria. Moltes de les seues obres no es van publicar fins a 1862 i fins i tot després.
Les teories de Bolzano sobre l'infinit matemàtic van anticipar les de [[Georg Cantor]] sobre conjunts infinits.
== Referències ==
<references/>
== Bibliografia ==
* Boyer, Carl B. (1959), The history of the calculus and its conceptual development, New York: Dover Publications, MR0124178.
* Boyer, Carl B.; Merzbach, Uta C. (1991), A History of Mathematics, New York: John Wiley & Sons, ISBN 978-0-471-54397-8.
* Ewald, William B., ed. (1996), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 volumes, Oxford University Press.
* O'Connor, John J.; Robertson, Edmund F. (2005), "Bolzano", MacTutor History of Mathematics archive.
* Künne, Wolfgang (1998), "Bolzano, Bernard", Routledge Encyclopedia of Philosophy, 1, London: Routledge, pp. 823–827. Retrieved on 2007-03-05
[[Categoria:Científics checs]]
[[Categoria:Filòsofs en alemany]]
[[Categoria:Matemàtics europeus]]
[[Categoria:Religiosos checs]]
[[Categoria:Religiosos catòlics]]
[[Categoria:Persones de Praga]]