Canvis

6 bytes eliminats ,  20:13 5 març 2018
m
sense resum d'edició
Llínea 2: Llínea 2:  
[[Archiu:Widmo1HNMR.png|thumb|Determinació de la composició d'una mostra per [[resonància magnètica nuclear]] ]]
 
[[Archiu:Widmo1HNMR.png|thumb|Determinació de la composició d'una mostra per [[resonància magnètica nuclear]] ]]
 
La '''química analítica''' és la branca de la [[química]] que consistix en l'[[Anàlisis química|anàlisis]] de mostres de substàncies diverses per determinar-ne la seua composició química; aixina com l'estudi de les tècniques per fer anàlisis i estudiar les dades ([[quimiometria]]). Hi ha dos tipos principals d'anàlisis química:
 
La '''química analítica''' és la branca de la [[química]] que consistix en l'[[Anàlisis química|anàlisis]] de mostres de substàncies diverses per determinar-ne la seua composició química; aixina com l'estudi de les tècniques per fer anàlisis i estudiar les dades ([[quimiometria]]). Hi ha dos tipos principals d'anàlisis química:
* '''Anàlisis qualitativa''', que pretén establir la presència o absència d'un determinat [[elements químics|element]] o [[compost químic]] en la mostra per sobre d'un determinat nivell.
+
* '''Anàlisis qualitatiu''', que pretén establir la presència o absència d'un determinat [[elements químics|element]] o [[compost químic]] en la mostra per sobre d'un determinat nivell.
* '''Anàlisis quantitativa''', que pretén mesurar la quantitat o proporció exacta d'un determinat [[elements químics|element]] o [[compost químic]] en la mostra. Este és el tipo d'anàlisis més freqüent en la química analítica moderna.
+
* '''Anàlisis quantitatiu''', que pretén mesurar la quantitat o proporció exacta d'un determinat [[elements químics|element]] o [[compost químic]] en la mostra. Este és el tipo d'anàlisis més freqüent en la química analítica moderna.
    
En química analítica cal posar una cura especial en la arreplegada i tractament de les mostres, i utilisar les ferramentes [[estadística|estadístiques]] adequades per tal de poder obtindre la màxima [[precisió i exactitut]] de les mesures.
 
En química analítica cal posar una cura especial en la arreplegada i tractament de les mostres, i utilisar les ferramentes [[estadística|estadístiques]] adequades per tal de poder obtindre la màxima [[precisió i exactitut]] de les mesures.
Llínea 15: Llínea 15:     
== Anàlisis químic qualitatiu ==
 
== Anàlisis químic qualitatiu ==
{{Principal|Anàlisis inorgània qualitatiu}}
+
{{Principal|Anàlisis inorgànic qualitatiu}}
    
[[Archiu:Halogenidnachweis.jpg|thumb|Determinació de l'existència de Brom i Yode, a partir del color resultant despuix d'afegir hexà]]
 
[[Archiu:Halogenidnachweis.jpg|thumb|Determinació de l'existència de Brom i Yode, a partir del color resultant despuix d'afegir hexà]]
Llínea 22: Llínea 22:  
El reconeiximent d'una substància es basa en algunes de les seues propietats químiques, consistents en la formació d'atres noves substàncies fàcilment recognoscibles que, en general, són de naturalea insoluble o gaseosa i posseïxen un color i una olor característica. Tanmateix, no és possible pensar que cada substància, de les decenes de mils existents, puga reconéixer-se per mig d'una reacció diferencial característica d'ella, i encara que els composts minerals es troben o passen en dissolució en forma [[Ió (àtom) |iònica]] i el número d'espècies iòniques és enormement més chicotet, ni tan sols per a estes, ni tampoc per als ions més corrents que normalment pot estar presents en una dissolució, es tenen ensaigs específics de reconeiximent, sense que interferixca la possible presència dels atres. Aixina, per eixemple, si existira un únic [[clorur]] insoluble blanc o un únic [[cromat]] insoluble groc, es comprendria que en agregar a la dissolució objecte de l'ensaig, un clorur o un cromat soluble, la formació d'un [[Precipitació química|precipitat]] blanc en el primer cas i groc en el segon seria prova concloent de l'existència en la dissolució investigada del [[catió]] en qüestió; pero en ser diversos els clorurs insolubles blancs i diversos els cromats insolubles grocs, la formació o no d'un precipitat serà tan sols la prova que en la dissolució objecte de l'anàlisis existixen o no hi ha els ions metàlics corresponents al grup d'estos composts insolubles. Si un a soles ensaig no pot resoldre respecte a la possible presència d'un ió determinat, mos permet en canvi decidir sobre l'existència en la dissolució investigada d'un grup particular d'ions i quasi sempre en un número molt reduït. Per este motiu, és necessari establir un método sistemàtic de reconeiximent dels ions que poden existir en dissolució, despuix d'haver portat el producte que es desija analisar a l'estat de dissolució.  
 
El reconeiximent d'una substància es basa en algunes de les seues propietats químiques, consistents en la formació d'atres noves substàncies fàcilment recognoscibles que, en general, són de naturalea insoluble o gaseosa i posseïxen un color i una olor característica. Tanmateix, no és possible pensar que cada substància, de les decenes de mils existents, puga reconéixer-se per mig d'una reacció diferencial característica d'ella, i encara que els composts minerals es troben o passen en dissolució en forma [[Ió (àtom) |iònica]] i el número d'espècies iòniques és enormement més chicotet, ni tan sols per a estes, ni tampoc per als ions més corrents que normalment pot estar presents en una dissolució, es tenen ensaigs específics de reconeiximent, sense que interferixca la possible presència dels atres. Aixina, per eixemple, si existira un únic [[clorur]] insoluble blanc o un únic [[cromat]] insoluble groc, es comprendria que en agregar a la dissolució objecte de l'ensaig, un clorur o un cromat soluble, la formació d'un [[Precipitació química|precipitat]] blanc en el primer cas i groc en el segon seria prova concloent de l'existència en la dissolució investigada del [[catió]] en qüestió; pero en ser diversos els clorurs insolubles blancs i diversos els cromats insolubles grocs, la formació o no d'un precipitat serà tan sols la prova que en la dissolució objecte de l'anàlisis existixen o no hi ha els ions metàlics corresponents al grup d'estos composts insolubles. Si un a soles ensaig no pot resoldre respecte a la possible presència d'un ió determinat, mos permet en canvi decidir sobre l'existència en la dissolució investigada d'un grup particular d'ions i quasi sempre en un número molt reduït. Per este motiu, és necessari establir un método sistemàtic de reconeiximent dels ions que poden existir en dissolució, despuix d'haver portat el producte que es desija analisar a l'estat de dissolució.  
   −
Tots els métodos de l'anàlisis qualitativa es basen en la formació de composts insolubles per mig de diversos reactius, agregats successivament a la dissolució, despuix de separar per filtració el precipitat format en cada cas. Cada precipitat, que conté un grup reduït d'ions, es dissol despuix, totalment o parcialment en els [[reactiu]]s apropiats; s'agreguen nous reactius per a formar precipitats en un número cada vegada menor d'ions fins a arribar a un únic compost insoluble que caracterisa un particular ió. La formació de composts insolubles i la redissolució de precipitats (per formació d'un compost molecular o iònic, poc ionisat) constituïxen els processos químics analítics. L'aplicació sistemàtica del principi del [[producte de solubilitat]] constituïx la base teòrica de tota química analítica qualitativa.
+
Tots els métodos de l'anàlisis qualitatiu es basen en la formació de composts insolubles per mig de diversos reactius, agregats successivament a la dissolució, despuix de separar per filtració el precipitat format en cada cas. Cada precipitat, que conté un grup reduït d'ions, es dissol despuix, totalment o parcialment en els [[reactiu]]s apropiats; s'agreguen nous reactius per a formar precipitats en un número cada vegada menor d'ions fins a arribar a un únic compost insoluble que caracterisa un particular ió. La formació de composts insolubles i la redissolució de precipitats (per formació d'un compost molecular o iònic, poc ionisat) constituïxen els processos químics analítics. L'aplicació sistemàtica del principi del [[producte de solubilitat]] constituïx la base teòrica de tota química analítica qualitativa.
    
Com els métodos de reconeiximent sistemàtic de [[cations]] són relativament més senzills que els d'[[anions]], s'assaja primer la presència de cations i despuix la d'anions. Tanmateix, la possible presència o absència de molts anions pot ya decidir-se de la de cations existents en la dissolució. Aixina, per eixemple, si en la dissolució hi ha l'ió [[bari (element)|bari]] o l'ió [[plom]], no hi hi ha dubte que no pot estar present l'ió [[sulfat]], l'[[ió (àtom)|ió]] [[carbonat]], ni tots els atres anions que formen sals bàriques o sals de plom insolubles.
 
Com els métodos de reconeiximent sistemàtic de [[cations]] són relativament més senzills que els d'[[anions]], s'assaja primer la presència de cations i despuix la d'anions. Tanmateix, la possible presència o absència de molts anions pot ya decidir-se de la de cations existents en la dissolució. Aixina, per eixemple, si en la dissolució hi ha l'ió [[bari (element)|bari]] o l'ió [[plom]], no hi hi ha dubte que no pot estar present l'ió [[sulfat]], l'[[ió (àtom)|ió]] [[carbonat]], ni tots els atres anions que formen sals bàriques o sals de plom insolubles.
Llínea 71: Llínea 71:  
* '''Grup 3''': el líquit que s'obté de la precipitació de les sals d'argent s'ensaja per als distints anions que pot haver-hi presents: [[nitrit]]s, [[nitrat]]s, [[clorat]]s i [[perclorat]]s.
 
* '''Grup 3''': el líquit que s'obté de la precipitació de les sals d'argent s'ensaja per als distints anions que pot haver-hi presents: [[nitrit]]s, [[nitrat]]s, [[clorat]]s i [[perclorat]]s.
   −
== Anàlisis química quantitativa ==
+
== Anàlisis químic quantitatiu ==
 
La determinació quantitativa d'una substància o d'un ió contingut en un determinat producte o en una dissolució, pot realisar-se de dos maneres: gravimètricament i volumètricament. Els métodos gravimètrics es basen a transformar la substància o ió en una nova substància insoluble, que s'aïlla en estat pur i es pesa; el càlcul de la quantitat de substància que es determina és immediat. Els métodos volumètrics es basen en agregar a un volum definit de la dissolució que conté la substància o ió en qüestió, el volum precís de dissolució valorada del reactiu adequat, de manera que s'agregue exactament el mateix número d'equivalents de reactiu que de substància existents en el líquid que s'investiga; este procediment rep el nom de valoració.
 
La determinació quantitativa d'una substància o d'un ió contingut en un determinat producte o en una dissolució, pot realisar-se de dos maneres: gravimètricament i volumètricament. Els métodos gravimètrics es basen a transformar la substància o ió en una nova substància insoluble, que s'aïlla en estat pur i es pesa; el càlcul de la quantitat de substància que es determina és immediat. Els métodos volumètrics es basen en agregar a un volum definit de la dissolució que conté la substància o ió en qüestió, el volum precís de dissolució valorada del reactiu adequat, de manera que s'agregue exactament el mateix número d'equivalents de reactiu que de substància existents en el líquid que s'investiga; este procediment rep el nom de valoració.
   −
=== Métodos gravimètrics d'anàlisis quantitativa ===
+
=== Métodos gravimètrics d'anàlisis quantitatiu ===
 
Perqué una reacció de precipitació puga utilisar-se com a base d'un método gravimètric d'anàlisis és necessari que complixca diverses condicions:
 
Perqué una reacció de precipitació puga utilisar-se com a base d'un método gravimètric d'anàlisis és necessari que complixca diverses condicions:
   Llínea 83: Llínea 83:  
3.- Que el compost precipitat siga una substància definida, perqué la proporció de l'element o ió investigat contingut en el mateix, siga constant; que puga llavar-se, per a eliminar el líquit que el mulla contenint sals, sense que es descomponga i sense pèrdua sensible i apreciable del mateix per dissolució a l'aigua de llavat; i que puga eixugar-se, sense que es modifique, per a poder-lo pesar en estat pur. Si el compost insoluble no té una composició molt definida, el precipitat separat, llavat i sec, es calcina per a transformar-lo en una verdadera substància (com un [[òxit]]), que finalment es pesa. Les balances utilisades als laboratoris químics pesen en una precisió de dècimes de miligram.
 
3.- Que el compost precipitat siga una substància definida, perqué la proporció de l'element o ió investigat contingut en el mateix, siga constant; que puga llavar-se, per a eliminar el líquit que el mulla contenint sals, sense que es descomponga i sense pèrdua sensible i apreciable del mateix per dissolució a l'aigua de llavat; i que puga eixugar-se, sense que es modifique, per a poder-lo pesar en estat pur. Si el compost insoluble no té una composició molt definida, el precipitat separat, llavat i sec, es calcina per a transformar-lo en una verdadera substància (com un [[òxit]]), que finalment es pesa. Les balances utilisades als laboratoris químics pesen en una precisió de dècimes de miligram.
   −
=== Métodos volumètrics d'anàlisis quantitativa ===
+
=== Métodos volumètrics d'anàlisis quantitatiu ===
 
[[Archiu:Titolazione.gif|thumb|Animació de la variació del [[pH]] durant una valoració]]
 
[[Archiu:Titolazione.gif|thumb|Animació de la variació del [[pH]] durant una valoració]]
 
La determinació volumètrica d'una substància es coneix com a valoració. La substància que s'analisa es dissol, i la dissolució es porta a un matràs aforat, completant-se el volum de líquit fins a l'enrasament. El volum de dissolució problema que ha de valorar-se es pren per mig d'una pipeta, i es porta a un [[matràs]] de valoració de forma cònica, que es designa com a matràs [[Erlenmeyer]]. La dissolució valorada del reactiu, de normalitat (mesura de concentració) exactament coneguda, es porta a una bureta, s'enrasa, i llavors s'inicia la valoració, deixant eixir de la [[bureta]] el reactiu, intermitentment, i agitant l'Erlenmeyer, el qual, per la seua forma, fa molt difícil que puga abocar-se un poc de líquit. La dissolució valorada s'agrega fins al punt d'equivalència, açò és, fins al punt en qué la quantitat de reactiu afegit és equivalent a la de substància que es valora continguda en l'Erlenmeyer. Este punt d'equivalència es coneix per mig d'un indicador adequat, que canvia de color en passar el líquit de tindre llaugeríssim excés de substància problema, a tindre un llaugeríssim excés de reactiu, la qual cosa se conseguix en una simple gota d'este. En el punt d'equivalència el número d'equivalents de les dos substàncies reactives és necessàriament el mateix. Si la normalitat de la dissolució problema és N i el volum pres de la mateixa és V, i si la normalitat de la dissolució valorada del reactiu és Nr, i el volum que es gasta d'ella fins al punt d'equivalència és Vr, es té que N = NrVr/V. La dita expressió permet calcular la normalitat de la dissolució problema a partir dels resultats de la valoració. Coneguda la normalitat, pot calcular-se la quantitat de substància problema en un litro o en un volum qualsevol de dissolució i, molt senzillament, la proporció de la mateixa en el producte original dissolt.
 
La determinació volumètrica d'una substància es coneix com a valoració. La substància que s'analisa es dissol, i la dissolució es porta a un matràs aforat, completant-se el volum de líquit fins a l'enrasament. El volum de dissolució problema que ha de valorar-se es pren per mig d'una pipeta, i es porta a un [[matràs]] de valoració de forma cònica, que es designa com a matràs [[Erlenmeyer]]. La dissolució valorada del reactiu, de normalitat (mesura de concentració) exactament coneguda, es porta a una bureta, s'enrasa, i llavors s'inicia la valoració, deixant eixir de la [[bureta]] el reactiu, intermitentment, i agitant l'Erlenmeyer, el qual, per la seua forma, fa molt difícil que puga abocar-se un poc de líquit. La dissolució valorada s'agrega fins al punt d'equivalència, açò és, fins al punt en qué la quantitat de reactiu afegit és equivalent a la de substància que es valora continguda en l'Erlenmeyer. Este punt d'equivalència es coneix per mig d'un indicador adequat, que canvia de color en passar el líquit de tindre llaugeríssim excés de substància problema, a tindre un llaugeríssim excés de reactiu, la qual cosa se conseguix en una simple gota d'este. En el punt d'equivalència el número d'equivalents de les dos substàncies reactives és necessàriament el mateix. Si la normalitat de la dissolució problema és N i el volum pres de la mateixa és V, i si la normalitat de la dissolució valorada del reactiu és Nr, i el volum que es gasta d'ella fins al punt d'equivalència és Vr, es té que N = NrVr/V. La dita expressió permet calcular la normalitat de la dissolució problema a partir dels resultats de la valoració. Coneguda la normalitat, pot calcular-se la quantitat de substància problema en un litro o en un volum qualsevol de dissolució i, molt senzillament, la proporció de la mateixa en el producte original dissolt.
Llínea 96: Llínea 96:  
Es realisa investigant la presència dels elements constituents, especialment del carbono, de l'hidrogen i del nitrogen i menys sovint dels halògens, del sofre i del fòsfor. El carbono es reconeix perqué en calfar la substància, es carbonisa o crema. Calfada en [[òxit cúpric]] en un [[tubo d'ensaig]], s'oxida i forma CO2, que es recull sobre l'aigua de calç, donant un precipitat de carbonat càlcic, CO3Ca. L'hidrogen existent s'oxida formant aigua, que es deposita en els parts superiors del tubo. El nitrogen pot investigar-se mitjançant el calfament de la substància en [[calç iodada]], en la qual cosa el nitrogen es desprén en forma d'amoníac, o mitjançant la fosa de la substància en sodi metàlic, i en este cas es forma [[cianur]] sòdic, que es convertix en ferrocianur en afegir una sal ferrosa. Els halògens es reconeixen calfant un poc de substància en òxit cúpric en una flama no lluminosa; si hi ha halògens, la flama es pinta en vert per la volatilitat de l'[[halur de coure]] corresponent. El sofre es reconeix mitjançant la fusió en sodi, la qual cosa dona lloc a la formació de [[sulfur sòdic]], la [[dissolució aquosa]] de la qual, tractada en dissolució d'[[acetat de plom]], produïx un precipitat negre de [[sulfur de plom]].
 
Es realisa investigant la presència dels elements constituents, especialment del carbono, de l'hidrogen i del nitrogen i menys sovint dels halògens, del sofre i del fòsfor. El carbono es reconeix perqué en calfar la substància, es carbonisa o crema. Calfada en [[òxit cúpric]] en un [[tubo d'ensaig]], s'oxida i forma CO2, que es recull sobre l'aigua de calç, donant un precipitat de carbonat càlcic, CO3Ca. L'hidrogen existent s'oxida formant aigua, que es deposita en els parts superiors del tubo. El nitrogen pot investigar-se mitjançant el calfament de la substància en [[calç iodada]], en la qual cosa el nitrogen es desprén en forma d'amoníac, o mitjançant la fosa de la substància en sodi metàlic, i en este cas es forma [[cianur]] sòdic, que es convertix en ferrocianur en afegir una sal ferrosa. Els halògens es reconeixen calfant un poc de substància en òxit cúpric en una flama no lluminosa; si hi ha halògens, la flama es pinta en vert per la volatilitat de l'[[halur de coure]] corresponent. El sofre es reconeix mitjançant la fusió en sodi, la qual cosa dona lloc a la formació de [[sulfur sòdic]], la [[dissolució aquosa]] de la qual, tractada en dissolució d'[[acetat de plom]], produïx un precipitat negre de [[sulfur de plom]].
   −
=== Anàlisi quantitatiu ===
+
=== Anàlisis quantitatiu ===
 
Es du a terme utilisant com a base els métodos indicats per a l'anàlisis qualitatiu. Es partix d'una quantitat determinada de substància, es recull i pesa el [[diòxit de carbono]], aixina com el [[vapor d'aigua]] formats, a fi de calcular el tant per cent de carbono i hidrogen en el compost. El vapor d'aigua s'absorbix primerament en un tubo que conté [[clorur càlcic]] anhidre i el diòxit de carbono s'absorbix en una dissolució concentrada de [[potassa càustica]]. La quantitat de nitrogen es determina en passar este element a l'estat lliure i en llegir el volum resultant ([[método de Dumes]]), o be a través de la seua transformació en amoníac, que es recull en excés d'àcit sulfúric valorat ([[método de Kjeldahl]]). Els atres elements es transformen convenientment a l'estat iònic (ions halur, sulfat, fosfat, etc), seguint-se despuix els métodos corrents de l'anàlisis inorgànica quantitativa. Els halògens es determinen, correntment, calfant la substància en àcit nítric concentrat i un poc de nitrat d'argent. L'oxigen no es determina, sino que es calcula la seua proporció per diferència. Els resultats de l'anàlisis quantitativa faciliten el càlcul de la [[fòrmula empírica]]; calculant el [[pes molecular]] podrem obtindre la [[fòrmula molecular]]. Pero el problema no queda resolt, ya que a causa de la [[isomeria]], la mateixa fòrmula molecular pot correspondre a distintes substàncies. Per a decidir quina substància és la investigada fa falta anàlisis funcional, que consistix a determinar les posicions que ocupen els [[àtoms]] a la molècula.
 
Es du a terme utilisant com a base els métodos indicats per a l'anàlisis qualitatiu. Es partix d'una quantitat determinada de substància, es recull i pesa el [[diòxit de carbono]], aixina com el [[vapor d'aigua]] formats, a fi de calcular el tant per cent de carbono i hidrogen en el compost. El vapor d'aigua s'absorbix primerament en un tubo que conté [[clorur càlcic]] anhidre i el diòxit de carbono s'absorbix en una dissolució concentrada de [[potassa càustica]]. La quantitat de nitrogen es determina en passar este element a l'estat lliure i en llegir el volum resultant ([[método de Dumes]]), o be a través de la seua transformació en amoníac, que es recull en excés d'àcit sulfúric valorat ([[método de Kjeldahl]]). Els atres elements es transformen convenientment a l'estat iònic (ions halur, sulfat, fosfat, etc), seguint-se despuix els métodos corrents de l'anàlisis inorgànica quantitativa. Els halògens es determinen, correntment, calfant la substància en àcit nítric concentrat i un poc de nitrat d'argent. L'oxigen no es determina, sino que es calcula la seua proporció per diferència. Els resultats de l'anàlisis quantitativa faciliten el càlcul de la [[fòrmula empírica]]; calculant el [[pes molecular]] podrem obtindre la [[fòrmula molecular]]. Pero el problema no queda resolt, ya que a causa de la [[isomeria]], la mateixa fòrmula molecular pot correspondre a distintes substàncies. Per a decidir quina substància és la investigada fa falta anàlisis funcional, que consistix a determinar les posicions que ocupen els [[àtoms]] a la molècula.
  
124 245

edicions