Canvis

Anar a la navegació Anar a la busca
101 bytes eliminats ,  17:10 20 maig 2017
m
sense resum d'edició
Llínea 35: Llínea 35:  
* Pot ser que <math>d(x,E)=0</math> pero <math>x \notin E</math>, per eixemple si <math>x</math> és un [[punt de adheriment]] de <math>E</math>. De fet, la [[Clausura topològica|clausura]] de <math>E</math> es precisament el conjunt dels punts de <math>X</math> que tenen distància 0 a <math>E</math>.
 
* Pot ser que <math>d(x,E)=0</math> pero <math>x \notin E</math>, per eixemple si <math>x</math> és un [[punt de adheriment]] de <math>E</math>. De fet, la [[Clausura topològica|clausura]] de <math>E</math> es precisament el conjunt dels punts de <math>X</math> que tenen distància 0 a <math>E</math>.
   −
Els casos de distància d'un punt a una recta o de distància d'un punt a un pla no són més que casos particulars de la distància d'un punt a un conjunt, quan es considera la distància euclidiana. (la fòrmula de distància d'un punt a una recta està incorrecta, tracten de solucionar, per favor)
+
Els casos de distància d'un punt a una recta o de distància d'un punt a un pla no són més que casos particulars de la distància d'un punt a un conjunt, quan es considera la distància euclidiana.
    
=== Distància entre dos conjunts ===
 
=== Distància entre dos conjunts ===
124 534

edicions

Menú de navegació